4.00
(2 Ratings)
The Data Science Course: Complete Data Science Bootcamp 2024
About Course
Learn the skills you need to become a data scientist with this comprehensive online course! This free course covers everything from the basics of data science to advanced machine learning techniques, all taught by experienced instructors.
This course is perfect for anyone who wants to learn data science, whether you’re a complete beginner or have some experience. You’ll learn about:
- Introduction to Data and Data Science
- Mathematics for Data Science
- Statistics for Data Science
- Python Programming
- Data Visualization with Tableau
- Advanced Statistics
- Machine Learning
- Deep Learning
This course is completely free and comes with:
- Active Q&A support
- A community of data science learners
- A certificate of completion
- Access to future updates
- Real-life business cases
This course is available on top platforms like Udemy, Udacity, Coursera, MasterClass, NearPeer, and more. Sign up today and start your journey to becoming a data scientist!
What Will You Learn?
- The course provides the entire toolbox you need to become a data scientist
- Fill up your resume with in demand data science skills: Statistical analysis, Python programming with NumPy, pandas, matplotlib, and Seaborn, Advanced statistical analysis, Tableau, Machine Learning with stats models and scikit-learn, Deep learning with TensorFlow
- Impress interviewers by showing an understanding of the data science field
- Learn how to pre-process data
- Understand the mathematics behind Machine Learning (an absolute must which other courses don’t teach!)
- Start coding in Python and learn how to use it for statistical analysis
- Perform linear and logistic regressions in Python
- Carry out cluster and factor analysis
- Be able to create Machine Learning algorithms in Python, using NumPy, statsmodels and scikit-learn
- Apply your skills to real-life business cases
- Use state-of-the-art Deep Learning frameworks such as Google’s TensorFlowDevelop a business intuition while coding and solving tasks with big data
- Unfold the power of deep neural networks
- Improve Machine Learning algorithms by studying underfitting, overfitting, training, validation, n-fold cross validation, testing, and how hyperparameters could improve performance
- Warm up your fingers as you will be eager to apply everything you have learned here to more and more real-life situations
Course Content
01 – Part 1 Introduction
-
A Message from the Professor
-
001 A Practical Example What You Will Learn in This Course.mp4
00:00 -
002 What Does the Course Cover.mp4
00:00 -
003 Download All Resources and Important FAQ.html
00:00 -
external-links.txt
00:00 -
Section Quiz
02 – The Field of Data Science – The Various Data Science Disciplines
-
001 Data Science and Business Buzzwords Why are there so Many.mp4
00:00 -
002 What is the difference between Analysis and Analytics.mp4
00:00 -
003 Business Analytics, Data Analytics, and Data Science An Introduction.mp4
00:00 -
004 Continuing with BI, ML, and AI.mp4
00:00 -
005 A Breakdown of our Data Science Infographic.mp4
00:00 -
Section Quiz
03 – The Field of Data Science – Connecting the Data Science Disciplines
-
001 Applying Traditional Data, Big Data, BI, Traditional Data Science and ML_en.mp4
00:00 -
Section Quiz
04 – The Field of Data Science – The Benefits of Each Discipline
-
001 The Reason Behind These Disciplines.mp4
00:00 -
Section Quiz
05 – The Field of Data Science – Popular Data Science Techniques
-
001 Techniques for Working with Traditional Data.mp4
00:00 -
002 Real Life Examples of Traditional Data.mp4
00:00 -
003 Techniques for Working with Big Data.mp4
00:00 -
004 Real Life Examples of Big Data.mp4
00:00 -
005 Business Intelligence (BI) Techniques.mp4
00:00 -
006 Real Life Examples of Business Intelligence (BI).mp4
00:00 -
007 Techniques for Working with Traditional Methods.mp4
00:00 -
008 Real Life Examples of Traditional Methods.mp4
00:00 -
009 Machine Learning (ML) Techniques.mp4
00:00 -
010 Types of Machine Learning.mp4
00:00 -
011 Real Life Examples of Machine Learning (ML).mp4
00:00 -
Section Quiz
06 – The Field of Data Science – Popular Data Science Tools
-
001 Necessary Programming Languages and Software Used in Data Science_en.mp4
00:00 -
Section Quiz
07 – The Field of Data Science – Careers in Data Science
-
001 Finding the Job – What to Expect and What to Look for.mp4
00:00 -
Section Quiz
08 – The Field of Data Science – Debunking Common Misconceptions
-
001 Debunking Common Misconceptions.mp4
00:00 -
Section Quiz
09 – Part 2 Probability
-
001 The Basic Probability Formula.mp4
00:00 -
002 Computing Expected Values.mp4
00:00 -
003 Frequency.mp4
00:00 -
004 Events and Their Complements.mp4
00:00 -
Section Quiz
10 – Probability – Combinatorics
-
001 Fundamentals of Combinatorics.mp4
00:00 -
002 Permutations and How to Use Them.mp4
00:00 -
003 Simple Operations with Factorials.mp4
00:00 -
004 Solving Variations with Repetition.mp4
00:00 -
005 Solving Variations without Repetition.mp4
00:00 -
006 Solving Combinations.mp4
00:00 -
007 Symmetry of Combinations.mp4
00:00 -
008 Solving Combinations with Separate Sample Spaces.mp4
00:00 -
009 Combinatorics in Real-Life The Lottery.mp4
00:00 -
010 A Recap of Combinatorics.mp4
00:00 -
011 A Practical Example of Combinatorics.mp4
00:00 -
Section Quiz
11 – Probability – Bayesian Inference
-
001 Sets and Events.mp4
00:00 -
002 Ways Sets Can Interact.mp4
00:00 -
003 Intersection of Sets.mp4
00:00 -
004 Union of Sets.mp4
00:00 -
005 Mutually Exclusive Sets.mp4
00:00 -
006 Dependence and Independence of Sets.mp4
00:00 -
007 The Conditional Probability Formula.mp4
00:00 -
008 The Law of Total Probability.mp4
00:00 -
009 The Additive Rule.mp4
00:00 -
010 The Multiplication Law.mp4
00:00 -
011 Bayes’ Law.mp4
00:00 -
012 A Practical Example of Bayesian Inference.mp4
00:00 -
Section Quiz
12 – Probability – Distributions
-
001 Fundamentals of Probability Distributions.mp4
00:00 -
002 Types of Probability Distributions.mp4
00:00 -
003 Characteristics of Discrete Distributions.mp4
00:00 -
004 Discrete Distributions The Uniform Distribution.mp4
00:00 -
005 Discrete Distributions The Bernoulli Distribution.mp4
00:00 -
006 Discrete Distributions The Binomial Distribution.mp4
00:00 -
007 Discrete Distributions The Poisson Distribution.mp4
00:00 -
008 Characteristics of Continuous Distributions.mp4
00:00 -
009 Continuous Distributions The Normal Distribution.mp4
00:00 -
010 Continuous Distributions The Standard Normal Distribution.mp4
00:00 -
011 Continuous Distributions The Students’ T Distribution.mp4
00:00 -
012 Continuous Distributions The Chi-Squared Distribution.mp4
00:00 -
013 Continuous Distributions The Exponential Distribution.mp4
00:00 -
014 Continuous Distributions The Logistic Distribution.mp4
00:00 -
015 A Practical Example of Probability Distributions.mp4
00:00 -
Section Quiz
13 – Probability – Probability in Other Fields
-
001 Probability in Finance.mp4
00:00 -
002 Probability in Statistics.mp4
00:00 -
003 Probability in Data Science.mp4
00:00 -
Section Quiz
14 – Part 3 Statistics
-
001 Population and Sample.mp4
00:00 -
Section Quiz
15 – Statistics – Descriptive Statistics
-
001 Types of Data.mp4
00:00 -
002 Levels of Measurement.mp4
00:00 -
003 Categorical Variables – Visualization Techniques.mp4
00:00 -
004 Categorical Variables Exercise.html
00:00 -
005 Numerical Variables – Frequency Distribution Table.mp4
00:00 -
006 Numerical Variables Exercise.html
00:00 -
007 The Histogram.mp4
00:00 -
008 Histogram Exercise.html
00:00 -
009 Cross Tables and Scatter Plots.mp4
00:00 -
010 Cross Tables and Scatter Plots Exercise.html
00:00 -
011 Mean, median and mode.mp4
00:00 -
012 Mean, Median and Mode Exercise.html
00:00 -
013 Skewness.mp4
00:00 -
014 Skewness Exercise.html
00:00 -
015 Variance.mp4
00:00 -
016 Variance Exercise.html
00:00 -
017 Standard Deviation and Coefficient of Variation.mp4
00:00 -
018 Standard Deviation and Coefficient of Variation Exercise.html
00:00 -
019 Covariance.mp4
00:00 -
020 Covariance Exercise.html
00:00 -
021 Correlation Coefficient.mp4
00:00 -
022 Correlation Coefficient Exercise.html
00:00 -
Section Quiz
16 – Statistics – Practical Example Descriptive Statistics
-
001 Practical Example Descriptive Statistics.mp4
00:00 -
002 Practical Example Descriptive Statistics Exercise.html
00:00 -
Section Quiz
17 – Statistics – Inferential Statistics Fundamentals
-
001 Introduction.mp4
00:00 -
002 What is a Distribution.mp4
00:00 -
003 The Normal Distribution.mp4
00:00 -
004 The Standard Normal Distribution.mp4
00:00 -
005 The Standard Normal Distribution Exercise.html
00:00 -
006 Central Limit Theorem.mp4
00:00 -
007 Standard error.mp4
00:00 -
008 Estimators and Estimates.mp4
00:00 -
Section Quiz
18 – Statistics – Inferential Statistics Confidence Intervals
-
001 What are Confidence Intervals.mp4
00:00 -
002 Confidence Intervals; Population Variance Known; Z-score.mp4
00:00 -
003 Confidence Intervals; Population Variance Known; Z-score; Exercise.html
00:00 -
004 Confidence Interval Clarifications.mp4
00:00 -
005 Student’s T Distribution.mp4
00:00 -
006 Confidence Intervals; Population Variance Unknown; T-score.mp4
00:00 -
007 Confidence Intervals; Population Variance Unknown; T-score; Exercise.html
00:00 -
008 Margin of Error.mp4
00:00 -
009 Confidence intervals. Two means. Dependent samples.mp4
00:00 -
010 Confidence intervals. Two means. Dependent samples Exercise.html
00:00 -
011 Confidence intervals. Two means. Independent Samples (Part 1).mp4
00:00 -
012 Confidence intervals. Two means. Independent Samples (Part 1). Exercise.html
00:00 -
013 Confidence intervals. Two means. Independent Samples (Part 2).mp4
00:00 -
014 Confidence intervals. Two means. Independent Samples (Part 2). Exercise.html
00:00 -
015 Confidence intervals. Two means. Independent Samples (Part 3).mp4
00:00 -
Section Quiz
19 – Statistics – Practical Example Inferential Statistics
-
001 Practical Example Inferential Statistics.mp4
00:00 -
002 Practical Example Inferential Statistics Exercise.html
00:00 -
Section Quiz
20 – Statistics – Hypothesis Testing
-
001 Null vs Alternative Hypothesis.mp4
00:00 -
002 Further Reading on Null and Alternative Hypothesis.html
00:00 -
003 Rejection Region and Significance Level.mp4
00:00 -
004 Type I Error and Type II Error.mp4
00:00 -
005 Test for the Mean. Population Variance Known.mp4
00:00 -
006 Test for the Mean. Population Variance Known Exercise.html
00:00 -
007 p-value.mp4
00:00 -
008 Test for the Mean. Population Variance Unknown.mp4
00:00 -
009 Test for the Mean. Population Variance Unknown Exercise.html
00:00 -
010 Test for the Mean. Dependent Samples.mp4
00:00 -
011 Test for the Mean. Dependent Samples Exercise.html
00:00 -
012 Test for the mean. Independent Samples (Part 1).mp4
00:00 -
013 Test for the mean. Independent Samples (Part 1). Exercise.html
00:00 -
014 Test for the mean. Independent Samples (Part 2).mp4
00:00 -
015 Test for the mean. Independent Samples (Part 2). Exercise.html
00:00 -
Section Quiz
21 – Statistics – Practical Example Hypothesis Testing
-
001 Practical Example Hypothesis Testing.mp4
00:00 -
002 Practical Example Hypothesis Testing Exercise.html
00:00 -
Section Quiz
22 – Part 4 Introduction to Python
-
001 Introduction to Programming.mp4
00:00 -
002 Why Python.mp4
00:00 -
003 Why Jupyter.mp4
00:00 -
004 Installing Python and Jupyter.mp4
00:00 -
005 Understanding Jupyter’s Interface – the Notebook Dashboard.mp4
00:00 -
006 Prerequisites for Coding in the Jupyter Notebooks.mp4
00:00 -
Section Quiz
23 – Python – Variables and Data Types
-
001 Variables.mp4
00:00 -
002 Numbers and Boolean Values in Python.mp4
00:00 -
003 Python Strings.mp4
00:00 -
Section Quiz
24 – Python – Basic Python Syntax
-
001 Using Arithmetic Operators in Python.mp4
00:00 -
002 The Double Equality Sign.mp4
00:00 -
003 How to Reassign Values.mp4
00:00 -
004 Add Comments.mp4
00:00 -
005 Understanding Line Continuation.mp4
00:00 -
006 Indexing Elements.mp4
00:00 -
007 Structuring with Indentation.mp4
00:00 -
Section Quiz
25 – Python – Other Python Operators
-
001 Comparison Operators.mp4
00:00 -
002 Logical and Identity Operators.mp4
00:00 -
Section Quiz
26 – Python – Conditional Statements
-
001 The IF Statement.mp4
00:00 -
002 The ELSE Statement.mp4
00:00 -
003 The ELIF Statement.mp4
00:00 -
004 A Note on Boolean Values.mp4
00:00 -
Section Quiz
27 – Python – Python Functions
-
001 Defining a Function in Python.mp4
00:00 -
002 How to Create a Function with a Parameter.mp4
00:00 -
003 Defining a Function in Python – Part II.mp4
00:00 -
004 How to Use a Function within a Function.mp4
00:00 -
005 Conditional Statements and Functions.mp4
00:00 -
006 Functions Containing a Few Arguments.mp4
00:00 -
007 Built-in Functions in Python.mp4
00:00 -
Section Quiz
28 – Python – Sequences
-
001 Lists.mp4
00:00 -
002 Using Methods.mp4
00:00 -
003 List Slicing.mp4
00:00 -
004 Tuples.mp4
00:00 -
005 Dictionaries.mp4
00:00 -
Section Quiz
29 – Python – Iterations
-
001 For Loops.mp4
00:00 -
002 While Loops and Incrementing.mp4
00:00 -
003 Lists with the range() Function.mp4
00:00 -
004 Conditional Statements and Loops.mp4
00:00 -
005 Conditional Statements, Functions, and Loops.mp4
00:00 -
006 How to Iterate over Dictionaries.mp4
00:00 -
Section Quiz
30 – Python – Advanced Python Tools
-
001 Object Oriented Programming.mp4
00:00 -
002 Modules and Packages.mp4
00:00 -
003 What is the Standard Library.mp4
00:00 -
004 Importing Modules in Python.mp4
00:00 -
Section Quiz
31 – Part 5 Advanced Statistical Methods in Python
-
001 Introduction to Regression Analysis.mp4
00:00
32 – Advanced Statistical Methods – Linear Regression with StatsModels
-
001 The Linear Regression Model.mp4
00:00 -
002 Correlation vs Regression.mp4
00:00 -
003 Geometrical Representation of the Linear Regression Model_en.mp4
00:00 -
004 Python Packages Installation.mp4
00:00 -
005 First Regression in Python.mp4
00:00 -
006 First Regression in Python Exercise.html
00:00 -
007 Using Seaborn for Graphs.mp4
00:00 -
008 How to Interpret the Regression Table.mp4
00:00 -
009 Decomposition of Variability.mp4
00:00 -
010 What is the OLS.mp4
00:00 -
011 R-Squared.mp4
00:00 -
Section Quiz
33 – Advanced Statistical Methods – Multiple Linear Regression with StatsModels
-
001 Multiple Linear Regression.mp4
00:00 -
002 Adjusted R-Squared.mp4
00:00 -
003 Multiple Linear Regression Exercise.html
00:00 -
004 Test for Significance of the Model (F-Test).mp4
00:00 -
005 OLS Assumptions.mp4
00:00 -
006 A1 Linearity.mp4
00:00 -
007 A2 No Endogeneity.mp4
00:00 -
008 A3 Normality and Homoscedasticity.mp4
00:00 -
009 A4 No Autocorrelation.mp4
00:00 -
010 A5 No Multicollinearity.mp4
00:00 -
011 Dealing with Categorical Data – Dummy Variables_en.mp4
00:00 -
012 Dealing with Categorical Data – Dummy Variables.html
00:00 -
013 Making Predictions with the Linear Regression_en.mp4
00:00 -
Section Quiz
34 – Advanced Statistical Methods – Linear Regression with sklearn
-
001 What is sklearn and How is it Different from Other Packages_en.mp4
00:00 -
002 How are we Going to Approach this Section.mp4
00:00 -
003 Simple Linear Regression with sklearn.mp4
00:00 -
004 Simple Linear Regression with sklearn – A StatsModels-like Summary Table.mp4
00:00 -
005 A Note on Normalization.html
00:00 -
006 Simple Linear Regression with sklearn – Exercise.html
00:00 -
007 Multiple Linear Regression with sklearn.mp4
00:00 -
008 Calculating the Adjusted R-Squared in sklearn.mp4
00:00 -
009 Calculating the Adjusted R-Squared in sklearn – Exercise.html
00:00 -
010 Feature Selection (F-regression).mp4
00:00 -
011 A Note on Calculation of P-values with sklearn.html
00:00 -
012 Creating a Summary Table with P-values.mp4
00:00 -
013 Multiple Linear Regression – Exercise.html
00:00 -
014 Feature Scaling (Standardization).mp4
00:00 -
015 Feature Selection through Standardization of Weights.mp4
00:00 -
016 Predicting with the Standardized Coefficients.mp4
00:00 -
017 Feature Scaling (Standardization) – Exercise.html
00:00 -
018 Underfitting and Overfitting.mp4
00:00 -
019 Train – Test Split Explained.mp4
00:00 -
Section Quiz
35 – Advanced Statistical Methods – Practical Example Linear Regression
-
001 Practical Example Linear Regression (Part 1).mp4
00:00 -
002 Practical Example Linear Regression (Part 2).mp4
00:00 -
003 A Note on Multicollinearity.html
00:00 -
004 Practical Example Linear Regression (Part 3).mp4
00:00 -
005 Dummies and Variance Inflation Factor – Exercise.html
00:00 -
006 Practical Example Linear Regression (Part 4).mp4
00:00 -
007 Dummy Variables – Exercise.html
00:00 -
008 Practical Example Linear Regression (Part 5).mp4
00:00 -
009 Linear Regression – Exercise.html
00:00 -
external-links.txt
00:00 -
Section Quiz
36 – Advanced Statistical Methods – Logistic Regression
-
001 Introduction to Logistic Regression.mp4
00:00 -
002 A Simple Example in Python.mp4
00:00 -
003 Logistic vs Logit Function.mp4
00:00 -
004 Building a Logistic Regression.mp4
00:00 -
005 Building a Logistic Regression – Exercise.html
00:00 -
006 An Invaluable Coding Tip.mp4
00:00 -
007 Understanding Logistic Regression Tables.mp4
00:00 -
008 Understanding Logistic Regression Tables – Exercise.html
00:00 -
009 What do the Odds Actually Mean.mp4
00:00 -
010 Binary Predictors in a Logistic Regression.mp4
00:00 -
011 Binary Predictors in a Logistic Regression – Exercise.html
00:00 -
012 Calculating the Accuracy of the Model.mp4
00:00 -
013 Calculating the Accuracy of the Model.html
00:00 -
014 Underfitting and Overfitting.mp4
00:00 -
015 Testing the Model.mp4
00:00 -
016 Testing the Model – Exercise.html
00:00 -
Section Quiz
37 – Advanced Statistical Methods – Cluster Analysis
-
001 Introduction to Cluster Analysis.mp4
00:00 -
002 Some Examples of Clusters.mp4
00:00 -
003 Difference between Classification and Clustering.mp4
00:00 -
004 Math Prerequisites.mp4
00:00 -
Section Quiz
38 – Advanced Statistical Methods – K-Means Clustering
-
001 K-Means Clustering.mp4
00:00 -
002 A Simple Example of Clustering.mp4
00:00 -
003 A Simple Example of Clustering – Exercise.html
00:00 -
004 Clustering Categorical Data.mp4
00:00 -
005 Clustering Categorical Data – Exercise.html
00:00 -
006 How to Choose the Number of Clusters.mp4
00:00 -
007 How to Choose the Number of Clusters – Exercise.html
00:00 -
008 Pros and Cons of K-Means Clustering.mp4
00:00 -
009 To Standardize or not to Standardize.mp4
00:00 -
010 Relationship between Clustering and Regression.mp4
00:00 -
011 Market Segmentation with Cluster Analysis (Part 1).mp4
00:00 -
012 Market Segmentation with Cluster Analysis (Part 2).mp4
00:00 -
013 How is Clustering Useful.mp4
00:00 -
014 EXERCISE Species Segmentation with Cluster Analysis (Part 1).html
00:00 -
015 EXERCISE Species Segmentation with Cluster Analysis (Part 2).html
00:00 -
Section Quiz
39 – Advanced Statistical Methods – Other Types of Clustering
-
001 Types of Clustering.mp4
00:00 -
002 Dendrogram.mp4
00:00 -
003 Heatmaps.mp4
00:00 -
Section Quiz
40 – Part 6 Mathematics
-
001 What is a Matrix.mp4
00:00 -
002 Scalars and Vectors.mp4
00:00 -
003 Linear Algebra and Geometry.mp4
00:00 -
004 Arrays in Python – A Convenient Way To Represent Matrices.mp4
00:00 -
005 What is a Tensor.mp4
00:00 -
006 Addition and Subtraction of Matrices.mp4
00:00 -
007 Errors when Adding Matrices.mp4
00:00 -
008 Transpose of a Matrix.mp4
00:00 -
009 Dot Product.mp4
00:00 -
010 Dot Product of Matrices.mp4
00:00 -
011 Why is Linear Algebra Useful.mp4
00:00 -
Section Quiz
41 – Part 7 Deep Learning
-
001 What to Expect from this Part.mp4
00:00
42 – Deep Learning – Introduction to Neural Networks
-
001 Introduction to Neural Networks.mp4
00:00 -
002 Training the Model.mp4
00:00 -
003 Types of Machine Learning.mp4
00:00 -
004 The Linear Model (Linear Algebraic Version).mp4
00:00 -
005 The Linear Model with Multiple Inputs.mp4
00:00 -
006 The Linear model with Multiple Inputs and Multiple Outputs.mp4
00:00 -
007 Graphical Representation of Simple Neural Networks.mp4
00:00 -
008 What is the Objective Function.mp4
00:00 -
009 Common Objective Functions L2-norm Loss.mp4
00:00 -
010 Common Objective Functions Cross-Entropy Loss.mp4
00:00 -
011 Optimization Algorithm 1-Parameter Gradient Descent.mp4
00:00 -
012 Optimization Algorithm n-Parameter Gradient Descent.mp4
00:00 -
Section Quiz
43 – Deep Learning – How to Build a Neural Network from Scratch with NumPy
-
001 Basic NN Example (Part 1).mp4
00:00 -
002 Basic NN Example (Part 2).mp4
00:00 -
003 Basic NN Example (Part 3).mp4
00:00 -
004 Basic NN Example (Part 4).mp4
00:00 -
005 Basic NN Example Exercises.html
00:00 -
Section Quiz
44 – Deep Learning – TensorFlow 2.0 Introduction
-
001 How to Install TensorFlow 2.0.mp4
00:00 -
002 TensorFlow Outline and Comparison with Other Libraries.mp4
00:00 -
003 TensorFlow 1 vs TensorFlow 2.mp4
00:00 -
004 A Note on TensorFlow 2 Syntax.mp4
00:00 -
005 Types of File Formats Supporting TensorFlow.mp4
00:00 -
006 Outlining the Model with TensorFlow 2.mp4
00:00 -
007 Interpreting the Result and Extracting the Weights and Bias.mp4
00:00 -
008 Customizing a TensorFlow 2 Model.mp4
00:00 -
009 Basic NN with TensorFlow Exercises.html
00:00 -
Section Quiz
45 – Deep Learning – Digging Deeper into NNs Introducing Deep Neural Networks
-
001 What is a Layer.mp4
00:00 -
002 What is a Deep Net.mp4
00:00 -
003 Digging into a Deep Net.mp4
00:00 -
004 Non-Linearities and their Purpose.mp4
00:00 -
005 Activation Functions.mp4
00:00 -
006 Activation Functions Softmax Activation.mp4
00:00 -
007 Backpropagation.mp4
00:00 -
008 Backpropagation Picture.mp4
00:00 -
009 Backpropagation – A Peek into the Mathematics of Optimization.html
00:00 -
Section Quiz
46 – Deep Learning – Overfitting
-
001 What is Overfitting.mp4
00:00 -
002 Underfitting and Overfitting for Classification.mp4
00:00 -
003 What is Validation.mp4
00:00 -
004 Training, Validation, and Test Datasets.mp4
00:00 -
005 N-Fold Cross Validation.mp4
00:00 -
006 Early Stopping or When to Stop Training.mp4
00:00 -
Section Quiz
47 – Deep Learning – Initialization
-
001 What is Initialization.mp4
00:00 -
002 Types of Simple Initializations.mp4
00:00 -
003 State-of-the-Art Method – (Xavier) Glorot Initialization.mp4
00:00 -
Section Quiz
48 – Deep Learning – Digging into Gradient Descent and Learning Rate Schedules
-
001 Stochastic Gradient Descent.mp4
00:00 -
002 Problems with Gradient Descent.mp4
00:00 -
003 Momentum.mp4
00:00 -
004 Learning Rate Schedules, or How to Choose the Optimal Learning Rate_en.mp4
00:00 -
005 Learning Rate Schedules Visualized.mp4
00:00 -
006 Adaptive Learning Rate Schedules (AdaGrad and RMSprop )_en.mp4
00:00 -
007 Adam (Adaptive Moment Estimation).mp4
00:00 -
Section Quiz
49 – Deep Learning – Preprocessing
-
001 Preprocessing Introduction.mp4
00:00 -
002 Types of Basic Preprocessing.mp4
00:00 -
003 Standardization.mp4
00:00 -
004 Preprocessing Categorical Data.mp4
00:00 -
005 Binary and One-Hot Encoding.mp4
00:00 -
Section Quiz
50 – Deep Learning – Classifying on the MNIST Dataset
-
001 MNIST The Dataset.mp4
00:00 -
002 MNIST How to Tackle the MNIST.mp4
00:00 -
003 MNIST Importing the Relevant Packages and Loading the Data.mp4
00:00 -
004 MNIST Preprocess the Data – Create a Validation Set and Scale It.mp4
00:00 -
005 MNIST Preprocess the Data – Scale the Test Data – Exercise.html
00:00 -
006 MNIST Preprocess the Data – Shuffle and Batch.mp4
00:00 -
007 MNIST Preprocess the Data – Shuffle and Batch – Exercise.html
00:00 -
008 MNIST Outline the Model.mp4
00:00 -
009 MNIST Select the Loss and the Optimizer.mp4
00:00 -
010 MNIST Learning.mp4
00:00 -
011 MNIST – Exercises.html
00:00 -
012 MNIST Testing the Model.mp4
00:00 -
Section Quiz
51 – Deep Learning – Business Case Example
-
001 Business Case Exploring the Dataset and Identifying Predictors.mp4
00:00 -
002 Business Case Outlining the Solution.mp4
00:00 -
003 Business Case Balancing the Dataset.mp4
00:00 -
004 Business Case Preprocessing the Data.mp4
00:00 -
005 Business Case Preprocessing the Data – Exercise.html
00:00 -
006 Business Case Load the Preprocessed Data.mp4
00:00 -
007 Business Case Load the Preprocessed Data – Exercise.html
00:00 -
008 Business Case Learning and Interpreting the Result.mp4
00:00 -
009 Business Case Setting an Early Stopping Mechanism.mp4
00:00 -
010 Setting an Early Stopping Mechanism – Exercise.html
00:00 -
011 Business Case Testing the Model.mp4
00:00 -
012 Business Case Final Exercise.html
00:00 -
Section Quiz
52 – Deep Learning – Conclusion
-
001 Summary on What You’ve Learned.mp4
00:00 -
002 What’s Further out there in terms of Machine Learning.mp4
00:00 -
003 DeepMind and Deep Learning.html
00:00 -
004 An overview of CNNs.mp4
00:00 -
005 An Overview of RNNs.mp4
00:00 -
006 An Overview of non-NN Approaches.mp4
00:00 -
Section Quiz
53 – Appendix Deep Learning – TensorFlow 1 Introduction
-
001 READ ME!!!!.html
00:00 -
002 How to Install TensorFlow 1.mp4
00:00 -
003 A Note on Installing Packages in Anaconda.html
00:00 -
004 TensorFlow Intro.mp4
00:00 -
005 Actual Introduction to TensorFlow.mp4
00:00 -
006 Types of File Formats, supporting Tensors.mp4
00:00 -
007 Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases.mp4
00:00 -
008 Basic NN Example with TF Loss Function and Gradient Descent.mp4
00:00 -
009 Basic NN Example with TF Model Output.mp4
00:00 -
010 Basic NN Example with TF Exercises.html
00:00 -
Section Quiz
54 – Appendix Deep Learning – TensorFlow 1 Classifying on the MNIST Dataset
-
001 MNIST What is the MNIST Dataset.mp4
00:00 -
002 MNIST How to Tackle the MNIST.mp4
00:00 -
003 MNIST Relevant Packages.mp4
00:00 -
004 MNIST Model Outline.mp4
00:00 -
005 MNIST Loss and Optimization Algorithm.mp4
00:00 -
006 Calculating the Accuracy of the Model.mp4
00:00 -
007 MNIST Batching and Early Stopping.mp4
00:00 -
008 MNIST Learning.mp4
00:00 -
009 MNIST Results and Testing.mp4
00:00 -
010 MNIST Exercises.html
00:00 -
011 MNIST Solutions.html
00:00 -
Section Quiz
55 – Appendix Deep Learning – TensorFlow 1 Business Case
-
001 Business Case Getting Acquainted with the Dataset.mp4
00:00 -
002 Business Case Outlining the Solution.mp4
00:00 -
003 The Importance of Working with a Balanced Dataset.mp4
00:00 -
004 Business Case Preprocessing.mp4
00:00 -
005 Business Case Preprocessing Exercise.html
00:00 -
006 Creating a Data Provider.mp4
00:00 -
007 Business Case Model Outline.mp4
00:00 -
008 Business Case Optimization.mp4
00:00 -
009 Business Case Interpretation.mp4
00:00 -
010 Business Case Testing the Model.mp4
00:00 -
011 Business Case A Comment on the Homework.mp4
00:00 -
012 Business Case Final Exercise.html
00:00 -
Section Quiz
56 – Software Integration
-
001 What are Data, Servers, Clients, Requests, and Responses.mp4
00:00 -
002 What are Data Connectivity, APIs, and Endpoints.mp4
00:00 -
003 Taking a Closer Look at APIs.mp4
00:00 -
004 Communication between Software Products through Text Files.mp4
00:00 -
005 Software Integration – Explained.mp4
00:00 -
Section Quiz
57 – Case Study – What’s Next in the Course
-
001 Game Plan for this Python, SQL, and Tableau Business Exercise.mp4
00:00 -
002 The Business Task.mp4
00:00 -
003 Introducing the Data Set.mp4
00:00 -
Section Quiz
58 – Case Study – Preprocessing the ‘Absenteeism_data’
-
001 What to Expect from the Following Sections.html
00:00 -
002 Importing the Absenteeism Data in Python.mp4
00:00 -
003 Checking the Content of the Data Set.mp4
00:00 -
004 Introduction to Terms with Multiple Meanings.mp4
00:00 -
005 What’s Regression Analysis – a Quick Refresher.html
00:00 -
006 Using a Statistical Approach towards the Solution to the Exercise.mp4
00:00 -
007 Dropping a Column from a DataFrame in Python.mp4
00:00 -
008 EXERCISE – Dropping a Column from a DataFrame in Python.html
00:00 -
009 SOLUTION – Dropping a Column from a DataFrame in Python.html
00:00 -
010 Analyzing the Reasons for Absence.mp4
00:00 -
011 Obtaining Dummies from a Single Feature.mp4
00:00 -
012 EXERCISE – Obtaining Dummies from a Single Feature.html
00:00 -
013 SOLUTION – Obtaining Dummies from a Single Feature.html
00:00 -
014 Dropping a Dummy Variable from the Data Set.html
00:00 -
015 More on Dummy Variables A Statistical Perspective.mp4
00:00 -
016 Classifying the Various Reasons for Absence.mp4
00:00 -
017 Using .concat() in Python.mp4
00:00 -
018 EXERCISE – Using .concat() in Python.html
00:00 -
019 SOLUTION – Using .concat() in Python.html
00:00 -
020 Reordering Columns in a Pandas DataFrame in Python.mp4
00:00 -
021 EXERCISE – Reordering Columns in a Pandas DataFrame in Python.html
00:00 -
022 SOLUTION – Reordering Columns in a Pandas DataFrame in Python.html
00:00 -
023 Creating Checkpoints while Coding in Jupyter.mp4
00:00 -
024 EXERCISE – Creating Checkpoints while Coding in Jupyter.html
00:00 -
025 SOLUTION – Creating Checkpoints while Coding in Jupyter.html
00:00 -
026 Analyzing the Dates from the Initial Data Set.mp4
00:00 -
027 Extracting the Month Value from the Date Column.mp4
00:00 -
028 Extracting the Day of the Week from the Date Column.mp4
00:00 -
029 EXERCISE – Removing the Date Column.html
00:00 -
030 Analyzing Several Straightforward Columns for this Exercise.mp4
00:00 -
031 Working on Education, Children, and Pets.mp4
00:00 -
032 Final Remarks of this Section.mp4
00:00 -
033 A Note on Exporting Your Data as a .csv File.html
00:00 -
Section Quiz
59 – Case Study – Applying Machine Learning to Create the ‘absenteeism_module’
-
001 Exploring the Problem with a Machine Learning Mindset_en.mp4
00:00 -
002 Creating the Targets for the Logistic Regression_en.mp4
00:00 -
003 Selecting the Inputs for the Logistic Regression_en.mp4
00:00 -
004 Standardizing the Data.mp4
00:00 -
005 Splitting the Data for Training and Testing.mp4
00:00 -
006 Fitting the Model and Assessing its Accuracy.mp4
00:00 -
007 Creating a Summary Table with the Coefficients and Intercept_en.mp4
00:00 -
008 Interpreting the Coefficients for Our Problem.mp4
00:00 -
009 Standardizing only the Numerical Variables (Creating a Custom Scaler)_en.mp4
00:00 -
010 Interpreting the Coefficients of the Logistic Regression_en.mp4
00:00 -
011 Backward Elimination or How to Simplify Your Model_en.mp4
00:00 -
012 Testing the Model We Created_en.mp4
00:00 -
013 Saving the Model and Preparing it for Deployment_en.mp4
00:00 -
014 ARTICLE – A Note on ‘pickling’.html
00:00 -
015 EXERCISE – Saving the Model (and Scaler).html
00:00 -
016 Preparing the Deployment of the Model through a Module_en.mp4
00:00 -
external-links.txt
00:00 -
Section Quiz
60 – Case Study – Loading the ‘absenteeism_module’
-
001 Are You Sure You’re All Set.html
00:00 -
002 Deploying the ‘absenteeism_module’ – Part I.mp4
00:00 -
003 Deploying the ‘absenteeism_module’ – Part II.mp4
00:00 -
004 Exporting the Obtained Data Set as a .csv.html
00:00 -
Section Quiz
61 – Case Study – Analyzing the Predicted Outputs in Tableau
-
001 EXERCISE – Age vs Probability.html
00:00 -
002 Analyzing Age vs Probability in Tableau.mp4
00:00 -
003 EXERCISE – Reasons vs Probability.html
00:00 -
004 Analyzing Reasons vs Probability in Tableau.mp4
00:00 -
005 EXERCISE – Transportation Expense vs Probability.html
00:00 -
006 Analyzing Transportation Expense vs Probability in Tableau.mp4
00:00 -
Section Quiz
62 – Appendix – Additional Python Tools
-
001 Using the .format() Method.mp4
00:00 -
002 Iterating Over Range Objects.mp4
00:00 -
003 Introduction to Nested For Loops.mp4
00:00 -
004 Triple Nested For Loops.mp4
00:00 -
005 List Comprehensions.mp4
00:00 -
006 Anonymous (Lambda) Functions.mp4
00:00 -
Section Quiz
63 – Appendix – pandas Fundamentals
-
001 Introduction to pandas Series.mp4
00:00 -
002 Working with Methods in Python – Part I.mp4
00:00 -
003 Working with Methods in Python – Part II.mp4
00:00 -
004 Parameters and Arguments in pandas.mp4
00:00 -
005 Using .unique() and .nunique().mp4
00:00 -
006 Using .sort_values().mp4
00:00 -
007 Introduction to pandas DataFrames – Part I.mp4
00:00 -
008 Introduction to pandas DataFrames – Part II.mp4
00:00 -
009 pandas DataFrames – Common Attributes.mp4
00:00 -
010 Data Selection in pandas DataFrames.mp4
00:00 -
011 pandas DataFrames – Indexing with .iloc().mp4
00:00 -
012 pandas DataFrames – Indexing with .loc().mp4
00:00 -
Section Quiz
64 – Appendix – Working with Text Files in Python
-
001 An Introduction to Working with Files in Python.mp4
00:00 -
002 File vs File Object, Reading vs Parsing Data.mp4
00:00 -
003 Structured, Semi-Structured and Unstructured Data.mp4
00:00 -
004 Text Files and Data Connectivity.mp4
00:00 -
005 Importing Data in Python – Principles.mp4
00:00 -
006 Plain Text Files, Flat Files and More.mp4
00:00 -
007 Text Files of Fixed Width.mp4
00:00 -
008 Common Naming Conventions.mp4
00:00 -
009 Importing Text Files – open().mp4
00:00 -
010 Importing Text Files – with open().mp4
00:00 -
011 Importing .csv Files – Part I.mp4
00:00 -
012 Importing .csv Files – Part II.mp4
00:00 -
013 Importing .csv Files – Part III.mp4
00:00 -
014 Importing Data with index_col.mp4
00:00 -
015 Importing Data with .loadtxt() and .genfromtxt().mp4
00:00 -
016 Importing Data – Partial Cleaning While Importing Data.mp4
00:00 -
017 Importing Data with NumPy – Exercise.html
00:00 -
018 Importing Data from .json Files.mp4
00:00 -
019 An Introduction to Working with Excel Files in Python.mp4
00:00 -
020 Working with Excel (.xlsx) Data.mp4
00:00 -
021 Importing Data in Python – an Important Exercise.mp4
00:00 -
022 Importing Data with the .squeeze() Method.mp4
00:00 -
023 Importing Files in Jupyter.mp4
00:00 -
024 Saving Your Data with pandas.mp4
00:00 -
025 Saving Your Data with NumPy – Part I – .npy.mp4
00:00 -
026 Saving Your Data with NumPy – Part II – .npz.mp4
00:00 -
027 Saving Your Data with NumPy – Part III – .csv.mp4
00:00 -
028 Saving Data with Numpy – Exercise.html
00:00 -
029 Working with Text Files in Python – Conclusion.mp4
00:00 -
external-links.txt
00:00 -
Section Quiz
65 – Bonus Lecture
-
001 Bonus Lecture Next Steps.html
00:00
Earn a certificate
Add this certificate to your resume to demonstrate your skills & increase your chances of getting noticed.
Student Ratings & Reviews
4.0
Total 2 Ratings
5
1 Rating
4
0 Rating
3
1 Rating
2
0 Rating
1
0 Rating
Kindly add these two Sections "ChatGpt for Data Science" and "Case Study: Train a Naive Classifier with ChatGpt for sentiment analysis"
please also share the practice material for this course