Python for Machine Learning & Data Science Masterclass
About Course
Unlock the world of Data Science and Machine Learning with this comprehensive Python Masterclass, completely free on Theetay! This course, delivered by Jose Portilla and his team at Pierian Data Inc., equips you with the skills needed to thrive in this high-demand field.
This course is designed for learners with some Python experience who are ready to dive deeper into the world of data. You’ll master essential libraries like NumPy, Pandas, Matplotlib, and Seaborn, gaining a profound understanding of data analysis and visualization.
Furthermore, you’ll explore a wide range of machine learning algorithms using Scikit Learn, including:
- Linear Regression
- Regularization (Lasso, Ridge, Elastic Net)
- K Nearest Neighbors
- K Means Clustering
- Decision Trees
- Random Forests
- Natural Language Processing
- Support Vector Machines
- Hierarchical Clustering
- DBSCAN
- PCA
- Model Deployment
This course, originally on Udemy, offers a blend of practical real-world case studies and the mathematical theory behind machine learning algorithms, ensuring a deep understanding of both the “how” and the “why”. Join Theetay today and start your journey towards becoming a data science expert!
What Will You Learn?
- You will learn how to use data science and machine learning with Python.
- You will create data pipeline workflows to analyze, visualize, and gain insights from data.
- You will build a portfolio of data science projects with real world data.
- You will be able to analyze your own data sets and gain insights through data science.
- Master critical data science skills.
- Understand Machine Learning from top to bottom.
- Replicate real-world situations and data reports.
- Learn NumPy for numerical processing with Python.
- Conduct feature engineering on real world case studies.
- Learn Pandas for data manipulation with Python.
- Create supervised machine learning algorithms to predict classes.
- Learn Matplotlib to create fully customized data visualizations with Python.
- Create regression machine learning algorithms for predicting continuous values.
- Learn Seaborn to create beautiful statistical plots with Python.
- Construct a modern portfolio of data science and machine learning resume projects.
- Learn how to use Scikit-learn to apply powerful machine learning algorithms.
- Get set-up quickly with the Anaconda data science stack environment.
- Learn best practices for real-world data sets.
- Understand the full product workflow for the machine learning lifecycle.
- Explore how to deploy your machine learning models as interactive APIs.
Course Content
01 – Introduction to Course
-
A Message from the Professor
-
001 Welcome to the Course_.html
00:00 -
002 COURSE OVERVIEW LECTURE – PLEASE DO NOT SKIP_.mp4
00:00 -
003 Anaconda Python and Jupyter Install and Setup.mp4
00:00 -
004 Note on Environment Setup – Please read me_.html
00:00 -
005 Environment Setup.mp4
00:00 -
28813464-requirements.txt
00:00 -
33985574-UNZIP-FOR-NOTEBOOKS-FINAL.zip
00:00 -
external-assets-links.txt
00:00 -
Section Quiz
02 – OPTIONAL_ Python Crash Course
-
001 OPTIONAL_ Python Crash Course.html
00:00 -
002 Python Crash Course – Part One.mp4
00:00 -
003 Python Crash Course – Part Two.mp4
00:00 -
004 Python Crash Course – Part Three.mp4
00:00 -
005 Python Crash Course – Exercise Questions.mp4
00:00 -
006 Python Crash Course – Exercise Solutions.mp4
00:00 -
Section Quiz
03 – Machine Learning Pathway Overview
-
001 Machine Learning Pathway.mp4
00:00 -
Section Quiz
04 – NumPy
-
001 Introduction to NumPy.mp4
00:00 -
002 NumPy Arrays.mp4
00:00 -
003 NumPy Indexing and Selection.mp4
00:00 -
004 NumPy Operations.mp4
00:00 -
005 NumPy Exercises.mp4
00:00 -
006 Numpy Exercises – Solutions.mp4
00:00 -
Section Quiz
05 – Pandas
-
001 Introduction to Pandas.mp4
00:00 -
002 Series – Part One.mp4
00:00 -
003 Series – Part Two.mp4
00:00 -
004 DataFrames – Part One – Creating a DataFrame.mp4
00:00 -
005 DataFrames – Part Two – Basic Properties.mp4
00:00 -
006 DataFrames – Part Three – Working with Columns.mp4
00:00 -
007 DataFrames – Part Four – Working with Rows.mp4
00:00 -
008 Pandas – Conditional Filtering.mp4
00:00 -
009 Pandas – Useful Methods – Apply on Single Column.mp4
00:00 -
010 Pandas – Useful Methods – Apply on Multiple Columns.mp4
00:00 -
011 Pandas – Useful Methods – Statistical Information and Sorting.mp4
00:00 -
012 Missing Data – Overview.mp4
00:00 -
013 Missing Data – Pandas Operations.mp4
00:00 -
014 GroupBy Operations – Part One.mp4
00:00 -
015 GroupBy Operations – Part Two – MultiIndex.mp4
00:00 -
016 Combining DataFrames – Concatenation.mp4
00:00 -
017 Combining DataFrames – Inner Merge.mp4
00:00 -
018 Combining DataFrames – Left and Right Merge.mp4
00:00 -
019 Combining DataFrames – Outer Merge.mp4
00:00 -
020 Pandas – Text Methods for String Data.mp4
00:00 -
021 Pandas – Time Methods for Date and Time Data.mp4
00:00 -
022 Pandas Input and Output – CSV Files.mp4
00:00 -
023 Pandas Input and Output – HTML Tables.mp4
00:00 -
024 Pandas Input and Output – Excel Files.mp4
00:00 -
025 Pandas Input and Output – SQL Databases.mp4
00:00 -
026 Pandas Pivot Tables.mp4
00:00 -
027 Pandas Project Exercise Overview.mp4
00:00 -
028 Pandas Project Exercise Solutions.mp4
00:00 -
Section Quiz
06 – Matplotlib
-
001 Introduction to Matplotlib.mp4
00:00 -
002 Matplotlib Basics.mp4
00:00 -
003 Matplotlib – Understanding the Figure Object.mp4
00:00 -
004 Matplotlib – Implementing Figures and Axes.mp4
00:00 -
005 Matplotlib – Figure Parameters.mp4
00:00 -
006 Matplotlib – Subplots Functionality.mp4
00:00 -
007 Matplotlib Styling – Legends.mp4
00:00 -
008 Matplotlib Styling – Colors and Styles.mp4
00:00 -
009 Advanced Matplotlib Commands (Optional).mp4
00:00 -
010 Matplotlib Exercise Questions Overview.mp4
00:00 -
011 Matplotlib Exercise Questions – Solutions.mp4
00:00 -
Section Quiz
07 – Seaborn Data Visualizations
-
001 Introduction to Seaborn.mp4
00:00 -
002 Scatterplots with Seaborn.mp4
00:00 -
003 Distribution Plots – Part One – Understanding Plot Types.mp4
00:00 -
004 Distribution Plots – Part Two – Coding with Seaborn.mp4
00:00 -
005 Categorical Plots – Statistics within Categories – Understanding Plot Types.mp4
00:00 -
006 Categorical Plots – Statistics within Categories – Coding with Seaborn.mp4
00:00 -
007 Categorical Plots – Distributions within Categories – Understanding Plot Types.mp4
00:00 -
008 Categorical Plots – Distributions within Categories – Coding with Seaborn.mp4
00:00 -
009 Seaborn – Comparison Plots – Understanding the Plot Types.mp4
00:00 -
010 Seaborn – Comparison Plots – Coding with Seaborn.mp4
00:00 -
011 Seaborn Grid Plots.mp4
00:00 -
012 Seaborn – Matrix Plots.mp4
00:00 -
013 Seaborn Plot Exercises Overview.mp4
00:00 -
014 Seaborn Plot Exercises Solutions.mp4
00:00 -
Section Quiz
08 – Data Analysis and Visualization Capstone Project Exercise
-
001 Capstone Project Overview.mp4
00:00 -
002 Capstone Project Solutions – Part One.mp4
00:00 -
003 Capstone Project Solutions – Part Two.mp4
00:00 -
004 Capstone Project Solutions – Part Three.mp4
00:00 -
Section Quiz
09 – Machine Learning Concepts Overview
-
001 Introduction to Machine Learning Overview Section.mp4
00:00 -
002 Why Machine Learning_.mp4
00:00 -
003 Types of Machine Learning Algorithms.mp4
00:00 -
004 Supervised Machine Learning Process.mp4
00:00 -
005 Companion Book – Introduction to Statistical Learning.mp4
00:00 -
Section Quiz
10 – Linear Regression
-
001 Introduction to Linear Regression Section.mp4
00:00 -
002 Linear Regression – Algorithm History.mp4
00:00 -
003 Linear Regression – Understanding Ordinary Least Squares.mp4
00:00 -
004 Linear Regression – Cost Functions.mp4
00:00 -
005 Linear Regression – Gradient Descent.mp4
00:00 -
006 Python coding Simple Linear Regression.mp4
00:00 -
007 Overview of Scikit-Learn and Python.mp4
00:00 -
008 Linear Regression – Scikit-Learn Train Test Split.mp4
00:00 -
009 Linear Regression – Scikit-Learn Performance Evaluation – Regression.mp4
00:00 -
010 Linear Regression – Residual Plots.mp4
00:00 -
011 Linear Regression – Model Deployment and Coefficient Interpretation.mp4
00:00 -
012 Polynomial Regression – Theory and Motivation.mp4
00:00 -
013 Polynomial Regression – Creating Polynomial Features.mp4
00:00 -
014 Polynomial Regression – Training and Evaluation.mp4
00:00 -
015 Bias Variance Trade-Off.mp4
00:00 -
016 Polynomial Regression – Choosing Degree of Polynomial.mp4
00:00 -
017 Polynomial Regression – Model Deployment.mp4
00:00 -
018 Regularization Overview.mp4
00:00 -
019 Feature Scaling.mp4
00:00 -
020 Introduction to Cross Validation.mp4
00:00 -
021 Regularization Data Setup.mp4
00:00 -
022 L2 Regularization – Ridge Regression Theory.mp4
00:00 -
023 L2 Regularization – Ridge Regression – Python Implementation.mp4
00:00 -
024 L1 Regularization – Lasso Regression – Background and Implementation.mp4
00:00 -
025 L1 and L2 Regularization – Elastic Net.mp4
00:00 -
026 Linear Regression Project – Data Overview.mp4
00:00
11 – Feature Engineering and Data Preparation
-
001 A note from Jose on Feature Engineering and Data Preparation.html
00:00 -
002 Introduction to Feature Engineering and Data Preparation.mp4
00:00 -
003 Dealing with Outliers.mp4
00:00 -
004 Dealing with Missing Data _ Part One – Evaluation of Missing Data.mp4
00:00 -
005 Dealing with Missing Data _ Part Two – Filling or Dropping data based on Rows.mp4
00:00 -
006 Dealing with Missing Data _ Part 3 – Fixing data based on Columns.mp4
00:00 -
007 Dealing with Categorical Data – Encoding Options.mp4
00:00 -
Section Quiz
12 – Cross Validation , Grid Search, and the Linear Regression Project
-
001 Section Overview and Introduction.mp4
00:00 -
002 Cross Validation – Test _ Train Split.mp4
00:00 -
003 Cross Validation – Test _ Validation _ Train Split.mp4
00:00 -
004 Cross Validation – cross_val_score.mp4
00:00 -
005 Cross Validation – cross_validate.mp4
00:00 -
006 Grid Search.mp4
00:00 -
007 Linear Regression Project Overview.mp4
00:00 -
008 Linear Regression Project – Solutions.mp4
00:00 -
Section Quiz
13 – Logistic Regression
-
001 Early Bird Note on Downloading .zip for Logistic Regression Notes.html
00:00 -
002 Introduction to Logistic Regression Section.mp4
00:00 -
003 Logistic Regression – Theory and Intuition – Part One_ The Logistic Function.mp4
00:00 -
004 Logistic Regression – Theory and Intuition – Part Two_ Linear to Logistic.mp4
00:00 -
005 Logistic Regression – Theory and Intuition – Linear to Logistic Math.mp4
00:00 -
006 Logistic Regression – Theory and Intuition – Best fit with Maximum Likelihood.mp4
00:00 -
007 Logistic Regression with Scikit-Learn – Part One – EDA.mp4
00:00 -
008 Logistic Regression with Scikit-Learn – Part Two – Model Training.mp4
00:00 -
009 Classification Metrics – Confusion Matrix and Accuracy.mp4
00:00 -
010 Classification Metrics – Precison, Recall, F1-Score.mp4
00:00 -
011 Classification Metrics – ROC Curves.mp4
00:00 -
012 Logistic Regression with Scikit-Learn – Part Three – Performance Evaluation.mp4
00:00 -
013 Multi-Class Classification with Logistic Regression – Part One – Data and EDA.mp4
00:00 -
014 Multi-Class Classification with Logistic Regression – Part Two – Model.mp4
00:00 -
015 Logistic Regression Exercise Project Overview.mp4
00:00 -
016 Logistic Regression Project Exercise – Solutions.mp4
00:00 -
29304858-11-Logistic-Regression-Models.zip
00:00 -
Section Quiz
14 – KNN – K Nearest Neighbors
-
001 Introduction to KNN Section.mp4
00:00 -
002 KNN Classification – Theory and Intuition.mp4
00:00 -
003 KNN Coding with Python – Part One.mp4
00:00 -
004 KNN Coding with Python – Part Two – Choosing K.mp4
00:00 -
005 KNN Classification Project Exercise Overview.mp4
00:00 -
006 KNN Classification Project Exercise Solutions.mp4
00:00 -
29434428-12-K-Nearest-Neighbors.zip
00:00 -
Section Quiz
15 – Support Vector Machines
-
001 Introduction to Support Vector Machines.mp4
00:00 -
002 History of Support Vector Machines.mp4
00:00 -
003 SVM – Theory and Intuition – Hyperplanes and Margins.mp4
00:00 -
004 SVM – Theory and Intuition – Kernel Intuition.mp4
00:00 -
005 SVM – Theory and Intuition – Kernel Trick and Mathematics.mp4
00:00 -
006 SVM with Scikit-Learn and Python – Classification Part One.mp4
00:00 -
007 SVM with Scikit-Learn and Python – Classification Part Two.mp4
00:00 -
008 SVM with Scikit-Learn and Python – Regression Tasks.mp4
00:00 -
009 Support Vector Machine Project Overview.mp4
00:00 -
010 Support Vector Machine Project Solutions.mp4
00:00 -
29902052-13-Support-Vector-Machines.zip
00:00 -
Section Quiz
16 – Tree Based Methods_ Decision Tree Learning
-
001 Introduction to Tree Based Methods.mp4
00:00 -
002 Decision Tree – History.mp4
00:00 -
003 Decision Tree – Terminology.mp4
00:00 -
004 Decision Tree – Understanding Gini Impurity.mp4
00:00 -
005 Constructing Decision Trees with Gini Impurity – Part One.mp4
00:00 -
006 Constructing Decision Trees with Gini Impurity – Part Two.mp4
00:00 -
007 Coding Decision Trees – Part One – The Data.mp4
00:00 -
008 Coding Decision Trees – Part Two -Creating the Model.mp4
00:00 -
30205020-14-Decision-Trees.zip
00:00 -
Section Quiz
17 – Random Forests
-
001 Introduction to Random Forests Section.mp4
00:00 -
002 Random Forests – History and Motivation.mp4
00:00 -
003 Random Forests – Key Hyperparameters.mp4
00:00 -
004 Random Forests – Number of Estimators and Features in Subsets.mp4
00:00 -
005 Random Forests – Bootstrapping and Out-of-Bag Error.mp4
00:00 -
006 Coding Classification with Random Forest Classifier – Part One.mp4
00:00 -
007 Coding Classification with Random Forest Classifier – Part Two.mp4
00:00 -
008 Coding Regression with Random Forest Regressor – Part One – Data.mp4
00:00 -
009 Coding Regression with Random Forest Regressor – Part Two – Basic Models.mp4
00:00 -
010 Coding Regression with Random Forest Regressor – Part Three – Polynomials.mp4
00:00 -
011 Coding Regression with Random Forest Regressor – Part Four – Advanced Models.mp4
00:00 -
30930956-15-Random-Forests.zip
00:00 -
Section Quiz
18 – Boosting Methods
-
001 Introduction to Boosting Section.mp4
00:00 -
002 Boosting Methods – Motivation and History.mp4
00:00 -
003 AdaBoost Theory and Intuition.mp4
00:00 -
004 AdaBoost Coding Part One – The Data.mp4
00:00 -
005 AdaBoost Coding Part Two – The Model.mp4
00:00 -
006 Gradient Boosting Theory.mp4
00:00 -
007 Gradient Boosting Coding Walkthrough.mp4
00:00 -
31286608-16-Boosted-Trees.zip
00:00 -
Section Quiz
19 – Supervised Learning Capstone Project – Cohort Analysis and Tree Based Methods
-
001 Introduction to Supervised Learning Capstone Project.mp4
00:00 -
002 Solution Walkthrough – Supervised Learning Project – Data and EDA.mp4
00:00 -
003 Solution Walkthrough – Supervised Learning Project – Cohort Analysis.mp4
00:00 -
004 Solution Walkthrough – Supervised Learning Project – Tree Models.mp4
00:00 -
31389398-17-Supervised-Learning-Capstone-Project.zip
00:00 -
Section Quiz
20 – Naive Bayes Classification and Natural Language Processing (Supervised Learning)
-
001 Introduction to NLP and Naive Bayes Section.mp4
00:00 -
002 Naive Bayes Algorithm – Part One – Bayes Theorem.mp4
00:00 -
003 Naive Bayes Algorithm – Part Two – Model Algorithm.mp4
00:00 -
004 Feature Extraction from Text – Part One – Theory and Intuition.mp4
00:00 -
005 Feature Extraction from Text – Coding Count Vectorization Manually.mp4
00:00 -
006 Feature Extraction from Text – Coding with Scikit-Learn.mp4
00:00 -
007 Natural Language Processing – Classification of Text – Part One.mp4
00:00 -
008 Natural Language Processing – Classification of Text – Part Two.mp4
00:00 -
009 Text Classification Project Exercise Overview.mp4
00:00 -
010 Text Classification Project Exercise Solutions.mp4
00:00 -
31640094-18-Naive-Bayes-and-NLP.zip
00:00 -
Section Quiz
21 – Unsupervised Learning
-
001 Unsupervised Learning Overview.mp4
00:00 -
Section Quiz
22 – K-Means Clustering
-
001 Introduction to K-Means Clustering Section.mp4
00:00 -
002 Clustering General Overview.mp4
00:00 -
003 K-Means Clustering Theory.mp4
00:00 -
004 K-Means Clustering – Coding Part One.mp4
00:00 -
005 K-Means Clustering Coding Part Two.mp4
00:00 -
006 K-Means Clustering Coding Part Three.mp4
00:00 -
007 K-Means Color Quantization – Part One.mp4
00:00 -
008 K-Means Color Quantization – Part Two.mp4
00:00 -
009 K-Means Clustering Exercise Overview.mp4
00:00 -
010 K-Means Clustering Exercise Solution – Part One.mp4
00:00 -
011 K-Means Clustering Exercise Solution – Part Two.mp4
00:00 -
012 K-Means Clustering Exercise Solution – Part Three.mp4
00:00 -
32407448-20-Kmeans-Clustering.zip
00:00 -
33555798-palm-trees.jpg
00:00 -
Section Quiz
23 – Hierarchical Clustering
-
001 Introduction to Hierarchical Clustering.mp4
00:00 -
002 Hierarchical Clustering – Theory and Intuition.mp4
00:00 -
003 Hierarchical Clustering – Coding Part One – Data and Visualization.mp4
00:00 -
004 Hierarchical Clustering – Coding Part Two – Scikit-Learn.mp4
00:00 -
33028500-21-Hierarchical-Clustering.zip
00:00 -
Section Quiz
24 – DBSCAN – Density-based spatial clustering of applications with noise
-
001 Introduction to DBSCAN Section.mp4
00:00 -
002 DBSCAN – Theory and Intuition.mp4
00:00 -
003 DBSCAN versus K-Means Clustering.mp4
00:00 -
004 DBSCAN – Hyperparameter Theory.mp4
00:00 -
005 DBSCAN – Hyperparameter Tuning Methods.mp4
00:00 -
006 DBSCAN – Outlier Project Exercise Overview.mp4
00:00 -
007 DBSCAN – Outlier Project Exercise Solutions.mp4
00:00 -
33643014-22-DBSCAN.zip
00:00 -
external-assets-links.txt
00:00 -
Section Quiz
25 – PCA – Principal Component Analysis and Manifold Learning
-
001 Introduction to Principal Component Analysis.mp4
00:00 -
002 PCA Theory and Intuition – Part One.mp4
00:00 -
003 PCA Theory and Intuition – Part Two.mp4
00:00 -
004 PCA – Manual Implementation in Python.mp4
00:00 -
005 PCA – SciKit-Learn.mp4
00:00 -
006 PCA – Project Exercise Overview.mp4
00:00 -
007 PCA – Project Exercise Solution.mp4
00:00 -
33912220-23-PCA-Principal-Component-Analysis.zip
00:00 -
Section Quiz
26 – Model Deployment
-
001 Model Deployment Section Overview.mp4
00:00 -
002 Model Deployment Considerations.mp4
00:00 -
003 Model Persistence.mp4
00:00 -
004 Model Deployment as an API – General Overview.mp4
00:00 -
005 Note on Upcoming Video.html
00:00 -
006 Model API – Creating the Script.mp4
00:00 -
007 Testing the API.mp4
00:00 -
Section Quiz
Earn a certificate
Add this certificate to your resume to demonstrate your skills & increase your chances of getting noticed.