Deep Learning with Python and Keras
About Course
Deep Learning with Python and Keras – FREE Course
This comprehensive course provides a complete introduction to Deep Learning using Python and Keras. It’s designed for beginners and intermediate programmers and data scientists who want to learn about and apply Deep Learning techniques to real-world problems.
Start with a review of Deep Learning applications and a recap of Machine Learning tools and techniques. Then, dive into Artificial Neural Networks and learn how they are trained to solve Regression and Classification problems.
Throughout the course, you’ll explore various neural network architectures including Fully Connected, Convolutional, and Recurrent Neural Networks. You’ll learn both the theory and practical applications of each, with plenty of examples to solidify your understanding.
This course strikes a balance between theory and practice. We explain mathematical details while providing exercises and sample code to apply what you’ve learned. This approach equips you with a strong foundation in Deep Learning, covering both the theoretical and practical aspects.
By the end of the course, you will be able to:
- Identify problems that can be solved with Deep Learning
- Design and train various Neural Network models
- Utilize cloud computing to speed up training and enhance model performance
This course is completely FREE and available on Udemy. Enhance your data science skills today and unlock the power of Deep Learning!
What Will You Learn?
- To describe what Deep Learning is in a simple yet accurate way
- To explain how deep learning can be used to build predictive models
- To distinguish which practical applications can benefit from deep learning
- To install and use Python and Keras to build deep learning models
- To apply deep learning to solve supervised and unsupervised learning problems involving images, text, sound, time series and tabular data.
- To build, train and use fully connected, convolutional and recurrent neural networks
- To look at the internals of a deep learning model without intimidation and with the ability to tweak its parameters
- To train and run models in the cloud using a GPU
- To estimate training costs for large models
- To re-use pre-trained models to shortcut training time and cost (transfer learning)
Course Content
1. Welcome to the course!
-
A Message from the Professor
-
001. Welcome to the course!.mp4
00:00 -
002. Introduction.mp4
00:00 -
003. Real world applications of deep learning.mp4
00:00 -
004. Download and install Anaconda.mp4
00:00 -
005. Installation Video Guide.mp4
00:00 -
006. Obtain the code for the course.html
00:00 -
007. Course Folder Walkthrough.mp4
00:00 -
008. Your first deep learning model.mp4
00:00
2. Data
-
001. Section 2 Intro.mp4
00:00 -
002. Tabular data.mp4
00:00 -
003. Data exploration with Pandas code along.mp4
00:00 -
004. Visual data Exploration.mp4
00:00 -
005. Plotting with Matplotlib.mp4
00:00 -
006. Unstructured Data.mp4
00:00 -
007. Images and Sound in Jupyter.mp4
00:00 -
008. Feature Engineering.mp4
00:00 -
009. Exercise 1 Presentation.mp4
00:00 -
010. Exercise 1 Solution.mp4
00:00 -
011. Exercise 2 Presentation.mp4
00:00 -
012. Exercise 2 Solution.mp4
00:00 -
013. Exercise 3 Presentation.mp4
00:00 -
014. Exercise 3 Solution.mp4
00:00 -
015. Exercise 4 Presentation.mp4
00:00 -
016. Exercise 4 Solution.mp4
00:00 -
017. Exercise 5 Presentation.mp4
00:00 -
018. Exercise 5 Solution.mp4
00:00 -
Section Quiz
3. Machine Learning
-
001. Section 3 Intro.mp4
00:00 -
002. Machine Learning Problems.mp4
00:00 -
003. Supervised Learning.mp4
00:00 -
004. Linear Regression.mp4
00:00 -
005. Cost Function.mp4
00:00 -
006. Cost Function code along.mp4
00:00 -
007. Finding the best model.mp4
00:00 -
008. Linear Regression code along.mp4
00:00 -
009. Evaluating Performance.mp4
00:00 -
010. Evaluating Performance code along.mp4
00:00 -
011. Classification.mp4
00:00 -
012. Classification code along.mp4
00:00 -
013. Overfitting.mp4
00:00 -
014. Cross Validation.mp4
00:00 -
015. Cross Validation code along.mp4
00:00 -
016. Confusion matrix.mp4
00:00 -
017. Confusion Matrix code along.mp4
00:00 -
018. Feature Preprocessing code along.mp4
00:00 -
019. Exercise 1 Presentation.mp4
00:00 -
020. Exercise 1 solution.mp4
00:00 -
021. Exercise 2 Presentation.mp4
00:00 -
022. Exercise 2 solution.mp4
00:00 -
Section Quiz
4. Deep Learning Intro
-
001. Section 4 Intro.mp4
00:00 -
002. Deep Learning successes.mp4
00:00 -
003. Neural Networks.mp4
00:00 -
004. Deeper Networks.mp4
00:00 -
005. Neural Networks code along.mp4
00:00 -
006. Multiple Outputs.mp4
00:00 -
007. Multiclass classification code along.mp4
00:00 -
008. Activation Functions.mp4
00:00 -
009. Feed forward.mp4
00:00 -
010. Exercise 1 Presentation.mp4
00:00 -
011. Exercise 1 Solution.mp4
00:00 -
012. Exercise 2 Presentation.mp4
00:00 -
013. Exercise 2 Solution.mp4
00:00 -
014. Exercise 3 Presentation.mp4
00:00 -
015. Exercise 3 Solution.mp4
00:00 -
016. Exercise 4 Presentation.mp4
00:00 -
017. Exercise 4 Solution.mp4
00:00
5. Gradient Descent
-
001. Section 5 Intro.mp4
00:00 -
002. Derivatives and Gradient.mp4
00:00 -
003. Backpropagation intuition.mp4
00:00 -
004. Chain Rule.mp4
00:00 -
005. Derivative Calculation.mp4
00:00 -
006. Fully Connected Backpropagation.mp4
00:00 -
007. Matrix Notation.mp4
00:00 -
008. Numpy Arrays code along.mp4
00:00 -
009. Learning Rate.mp4
00:00 -
010. Learning Rate code along.mp4
00:00 -
011. Gradient Descent.mp4
00:00 -
012. Gradient Descent code along.mp4
00:00 -
013. EWMA.mp4
00:00 -
014. Optimizers.mp4
00:00 -
015. Optimizers code along.mp4
00:00 -
016. Initialization code along.mp4
00:00 -
017. Inner Layers Visualization code along.mp4
00:00 -
018. Exercise 1 Presentation.mp4
00:00 -
019. Exercise 1 Solution.mp4
00:00 -
020. Exercise 2 Presentation.mp4
00:00 -
021. Exercise 2 Solution.mp4
00:00 -
022. Exercise 3 Presentation.mp4
00:00 -
023. Exercise 3 Solution.mp4
00:00 -
024. Exercise 4 Presentation.mp4
00:00 -
025. Exercise 4 Solution.mp4
00:00 -
026. Tensorboard.mp4
00:00
6. Convolutional Neural Networks
-
001. Section 6 Intro.mp4
00:00 -
002. Features from Pixels.mp4
00:00 -
003. MNIST Classification.mp4
00:00 -
004. MNIST Classification code along.mp4
00:00 -
005. Beyond Pixels.mp4
00:00 -
006. Images as Tensors.mp4
00:00 -
007. Tensor Math code along.mp4
00:00 -
008. Convolution in 1 D.mp4
00:00 -
009. Convolution in 1 D code along.mp4
00:00 -
010. Convolution in 2 D.mp4
00:00 -
011. Image Filters code along.mp4
00:00 -
012. Convolutional Layers.mp4
00:00 -
013. Convolutional Layers code along.mp4
00:00 -
014. Pooling Layers.mp4
00:00 -
015. Pooling Layers code along.mp4
00:00 -
016. Convolutional Neural Networks.mp4
00:00 -
017. Convolutional Neural Networks code along.mp4
00:00 -
018. Weights in CNNs.mp4
00:00 -
019. Beyond Images.mp4
00:00 -
020. Exercise 1 Presentation.mp4
00:00 -
021. Exercise 1 Solution.mp4
00:00 -
022. Exercise 2 Presentation.mp4
00:00 -
023. Exercise 2 Solution.mp4
00:00 -
Section Quiz
7. Cloud GPUs
-
001. Google Colaboratory GPU notebook setup.html
00:00 -
002. Floyd GPU notebook setup.html
00:00
8. Recurrent Neural Networks
-
001. Section 8 Intro.mp4
00:00 -
002. Time Series.mp4
00:00 -
003. Sequence problems.mp4
00:00 -
004. Vanilla RNN.mp4
00:00 -
005. LSTM and GRU.mp4
00:00 -
006. Time Series Forecasting code along.mp4
00:00 -
007. Time Series Forecasting with LSTM code along.mp4
00:00 -
008. Rolling Windows.mp4
00:00 -
009. Rolling Windows code along.mp4
00:00 -
010. Exercise 1 Presentation.mp4
00:00 -
011. Exercise 1 Solution.mp4
00:00 -
012. Exercise 2 Presentation.mp4
00:00 -
013. Exercise 2 Solution.html
00:00 -
Section Quiz
9. Improving performance
-
001. Section 9 Intro.mp4
00:00 -
002. Learning curves.mp4
00:00 -
003. Learning curves code along.mp4
00:00 -
004. Batch Normalization.mp4
00:00 -
005. Batch Normalization code along.mp4
00:00 -
006. Dropout.mp4
00:00 -
007. Dropout and Regularization code along.mp4
00:00 -
008. Data Augmentation.mp4
00:00 -
009. Continuous Learning.mp4
00:00 -
010. Image Generator code along.mp4
00:00 -
011. Hyperparameter search.mp4
00:00 -
012. Embeddings.mp4
00:00 -
013. Embeddings code along.mp4
00:00 -
014. Movies Reviews Sentiment Analysis code along.mp4
00:00 -
015. Exercise 1 Presentation.mp4
00:00 -
016. Exercise 1 Solution.html
00:00 -
017. Exercise 2 Presentation.mp4
00:00 -
018. Exercise 2 Solution.html
00:00 -
019. Exercise 3 Presentation.mp4
00:00
Earn a certificate
Add this certificate to your resume to demonstrate your skills & increase your chances of getting noticed.