Become a Calculus 3 Master
About Course
Learn Calculus 3 for free with this comprehensive course from Udemy. This course covers everything from partial derivatives to multiple integrals and vectors. It includes 526 lessons, 161 quizzes, and 40 workbooks with extra practice problems.
The course is organized into three sections: Partial Derivatives, Multiple Integrals, and Vectors.
Each section includes video lessons, notes, quizzes, and workbooks.
This free Calculus 3 course is perfect for students who are struggling in their calculus class, or for those who want to brush up on their calculus skills.
This course is offered completely free of cost by Theetay and includes courses from various platforms like Udemy, Udacity, Coursera, MasterClass, NearPeer, and more. Start learning Calculus 3 today!
What Will You Learn?
- Partial Derivatives, including higher order partial derivatives, multivariable chain rule and implicit differentiation
- Multiple Integrals, including approximating double and triple integrals, finding volume, and changing the order of integration
- Vectors, including derivatives and integrals of vector functions, arc length and curvature, and line and surface integrals
Course Content
01 – Getting started
-
001 What we’ll learn in this course.mp4
00:00 -
002 How to get the most out of this course.mp4
00:00 -
003 Download the formula sheet.html
00:00 -
004 The EVERYTHING download.html
00:00 -
Section Quiz
02 – Partial Derivatives – Three-dimensional coordinate systems
-
001 Introduction to three-dimensional coordinate systems.html
00:00 -
002 Plotting points in three dimensions.html
00:00 -
003 Plotting points in three dimensions.mp4
00:00 -
004 Distance between points in three dimensions.html
00:00 -
005 Distance between points in three dimensions.mp4
00:00 -
006 Center, radius, and equation of the sphere.html
00:00 -
007 Center, radius, and equation of the sphere.mp4
00:00 -
008 Describing a region in three-dimensional space.mp4
00:00 -
009 Using inequalities to describe the region.mp4
00:00 -
010 BONUS! Extra practice problems. ).html
00:00 -
Section Quiz
03 – Partial Derivatives – Sketching graphs and level curves
-
001 Introduction to sketching graphs and level curves.html
00:00 -
002 Sketching level curves of multivariable functions.mp4
00:00 -
003 BONUS! Extra practice problems. ).html
00:00 -
Section Quiz
04 – Partial Derivatives – Lines and planes
-
001 Introduction to lines and planes.html
00:00 -
002 Vector, parametric and symmetric equations of a line.html
00:00 -
003 Vector and parametric equations of a line.mp4
00:00 -
004 Parametric and symmetric equations of a line.mp4
00:00 -
005 Symmetric equations of a line.mp4
00:00 -
006 Parallel, intersecting, skew, and perpendicular lines.html
00:00 -
007 Parallel, intersecting, skew, and perpendicular lines.mp4
00:00 -
008 Equation of a plane.html
00:00 -
009 Equation of a plane.mp4
00:00 -
010 Intersection of a line and a plane.html
00:00 -
011 Intersection of a line and a plane.mp4
00:00 -
012 Parallel, perpendicular and angle between planes.html
00:00 -
013 Parallel, perpendicular and angle between planes.mp4
00:00 -
014 Parametric equations for the line of intersection of two planes.html
00:00 -
015 Parametric equations for the line of intersection of two planes.mp4
00:00 -
016 Symmetric equations for the line of intersection of two planes.html
00:00 -
017 Symmetric equations for the line of intersection of two planes.mp4
00:00 -
018 Distance between a point and a line.mp4
00:00 -
019 Distance between a point and a plane.mp4
00:00 -
020 Distance between parallel planes.mp4
00:00 -
021 BONUS! Extra practice problems. ).html
00:00 -
Section Quiz
05 – Partial Derivatives – Cylinders and quadric surfaces
-
001 Introduction to cylinders and quadric surfaces.html
00:00 -
002 Reference chart for cylinders and quadric surfaces.html
00:00 -
003 Reducing equations to standard form.mp4
00:00 -
004 Sketching the surface.mp4
00:00 -
005 BONUS! Extra practice problems. ).html
00:00 -
Section Quiz
06 – Partial Derivatives – Limits and continuity
-
001 Introduction to limits and continuity.html
00:00 -
002 Domain of a multivariable function.mp4
00:00 -
003 Limit of a multivariable function.mp4
00:00 -
004 Precise definition of the limit for multivariable functions.mp4
00:00 -
005 Discontinuities of multivariable functions.mp4
00:00 -
006 Compositions of multivariable functions.mp4
00:00 -
007 BONUS! Extra practice problems. ).html
00:00 -
Section Quiz
07 – Partial Derivatives – Partial derivatives
-
001 Introduction to partial derivatives.html
00:00 -
002 Partial derivatives in two variables.html
00:00 -
003 Partial derivatives in two variables.mp4
00:00 -
004 Partial derivatives in three or more variables.html
00:00 -
005 Partial derivatives in three or more variables.mp4
00:00 -
006 Higher order partial derivatives.html
00:00 -
007 Higher order partial derivatives.mp4
00:00 -
008 BONUS! Extra practice problems. ).html
00:00 -
Section Quiz
08 – Partial Derivatives – Differentials
-
001 Introduction to differentials.html
00:00 -
002 Differential of a multivariable function.html
00:00 -
003 Differential of a multivariable function.mp4
00:00 -
004 BONUS! Extra practice problems. ).html
00:00 -
Section Quiz
09 – Partial Derivatives – Chain rule
-
001 Introduction to chain rule.html
00:00 -
002 Chain rule for multivariable functions.html
00:00 -
003 Chain rule for multivariable functions.mp4
00:00 -
004 Chain rule for multivariable functions, tree diagram.mp4
00:00 -
005 BONUS! Extra practice problems. ).html
00:00
10 – Partial Derivatives – Implicit differentiation
-
001 Introduction to implicit differentiation.html
00:00 -
002 Implicit differentiation for multivariable functions.html
00:00 -
003 Implicit differentiation for multivariable functions.mp4
00:00 -
004 BONUS! Extra practice problems. ).html
00:00
11 – Partial Derivatives – Directional derivatives
-
001 Introduction to directional derivatives.html
00:00 -
002 Directional derivatives in the direction of the vector.html
00:00 -
003 Directional derivatives in the direction of the vector.mp4
00:00 -
004 Directional derivatives in the direction of the angle.mp4
00:00 -
005 BONUS! Extra practice problems. ).html
00:00
12 – Partial Derivatives – Linear approximation and linearization
-
001 Introduction to linear approximation and linearization.html
00:00 -
002 Linear approximation in two variables.html
00:00 -
003 Linear approximation in two variables.mp4
00:00 -
004 Linearization of a multivariable function.mp4
00:00 -
005 BONUS! Extra practice problems. ).html
00:00
13 – Partial Derivatives – Gradient vectors
-
001 Introduction to gradient vectors.html
00:00 -
002 Gradient vectors.html
00:00 -
003 Gradient vectors.mp4
00:00 -
004 Gradient vectors and the tangent plane.html
00:00 -
005 Gradient vectors and the tangent plane.mp4
00:00 -
006 Maximum rate of change and its direction.mp4
00:00 -
007 BONUS! Extra practice problems. ).html
00:00 -
Section Quiz
14 – Partial Derivatives – Tangent planes and normal lines
-
001 Introduction to tangent planes and normal lines.html
00:00 -
002 Equation of the tangent plane.html
00:00 -
003 Equation of the tangent plane.mp4
00:00 -
004 Normal line to the surface.html
00:00 -
005 Normal line to the surface.mp4
00:00 -
006 BONUS! Extra practice problems. ).html
00:00 -
Section Quiz
15 – Partial Derivatives – Optimization
-
001 Introduction to optimization.html
00:00 -
002 Critical points.mp4
00:00 -
003 Second derivative test.html
00:00 -
004 Second derivative test.mp4
00:00 -
005 Local extrema and saddle points.mp4
00:00 -
006 Global extrema.mp4
00:00 -
007 Extreme value theorem.mp4
00:00 -
008 BONUS! Extra practice problems. ).html
00:00 -
Section Quiz
16 – Partial Derivatives – Applied optimization
-
001 Introduction to applied optimization.html
00:00 -
002 Maximum product of three real numbers.mp4
00:00 -
003 Maximum volume of a rectangular box inscribed in a sphere.mp4
00:00 -
004 Minimum distance from the point to the plane.mp4
00:00 -
005 Points on the cone closest to the given point.mp4
00:00 -
006 BONUS! Extra practice problems. ).html
00:00 -
Section Quiz
17 – Partial Derivatives – Lagrange multipliers
-
001 Introduction to lagrange multipliers.html
00:00 -
002 Lagrange multipliers.html
00:00 -
003 Two dimensions, one constraint.mp4
00:00 -
004 Three dimensions, one constraint.mp4
00:00 -
005 Three dimensions, two constraints.mp4
00:00 -
006 BONUS! Extra practice problems. ).html
00:00 -
Section Quiz
18 – Multiple Integrals – Approximating double integrals
-
001 Introduction to approximating double integrals.html
00:00 -
002 Approximating double integrals with rectangles.mp4
00:00 -
003 Midpoint rule for double integrals.html
00:00 -
004 Midpoint rule for double integrals.mp4
00:00 -
005 Riemann sums for double integrals.mp4
00:00 -
006 BONUS! Extra practice problems. ).html
00:00 -
Section Quiz
19 – Multiple Integrals – Double integrals
-
001 Introduction to double integrals.html
00:00 -
002 Average value.html
00:00 -
003 Average value.mp4
00:00 -
004 Iterated and double integrals.html
00:00 -
005 Iterated integrals.mp4
00:00 -
006 Double integrals.mp4
00:00 -
007 Type I and II regions.html
00:00 -
008 Type I and II regions.mp4
00:00 -
009 Finding surface area.html
00:00 -
010 Finding surface area.mp4
00:00 -
011 Finding volume.html
00:00 -
012 Finding volume.mp4
00:00 -
013 Changing the order of integration.mp4
00:00 -
014 BONUS! Extra practice problems. ).html
00:00 -
Section Quiz
20 – Multiple Integrals – Double integrals in polar coordinates
-
001 Introduction to double integrals in polar coordinates.html
00:00 -
002 Changing iterated and double integrals to polar coordinates.html
00:00 -
003 Changing iterated integrals to polar coordinates.mp4
00:00 -
004 Changing double integrals to polar coordinates.mp4
00:00 -
005 Sketching area.html
00:00 -
006 Sketching area.mp4
00:00 -
007 Finding area.html
00:00 -
008 Finding area.mp4
00:00 -
009 Finding volume.html
00:00 -
010 Finding volume.mp4
00:00 -
011 BONUS! Extra practice problems. ).html
00:00 -
Section Quiz
21 – Multiple Integrals – Applications of double integrals
-
001 Introduction to applications of double integrals.html
00:00 -
002 Double integrals to find mass and center of mass.mp4
00:00 -
003 BONUS! Extra practice problems. ).html
00:00 -
Section Quiz
22 – Multiple Integrals – Approximating triple integrals
-
001 Introduction to approximating triple integrals.html
00:00 -
002 Midpoint rule for triple integrals.html
00:00 -
003 Midpoint rule for triple integrals.mp4
00:00 -
004 BONUS! Extra practice problems. ).html
00:00 -
Section Quiz
23 – Multiple Integrals – Triple integrals
-
001 Introduction to triple integrals.html
00:00 -
002 Iterated and triple integrals.html
00:00 -
003 Iterated integrals.mp4
00:00 -
004 Triple integrals.mp4
00:00 -
005 Average value.html
00:00 -
006 Average value.mp4
00:00 -
007 Finding volume.html
00:00 -
008 Finding volume.mp4
00:00 -
009 Expressing the integral six ways.html
00:00 -
010 Expressing the integral six ways.mp4
00:00 -
011 BONUS! Extra practice problems. ).html
00:00 -
Section Quiz
24 – Multiple Integrals – Triple integrals in cylindrical coordinates
-
001 Introduction to triple integrals in cylindrical coordinates.html
00:00 -
002 Cylindrical coordinates.html
00:00 -
003 Cylindrical coordinates.mp4
00:00 -
004 Changing triple integrals to cylindrical coordinates.html
00:00 -
005 Changing triple integrals to cylindrical coordinates.mp4
00:00 -
006 Finding volume.html
00:00 -
007 Finding volume.mp4
00:00 -
008 BONUS! Extra practice problems. ).html
00:00 -
Section Quiz
25 – Multiple Integrals – Triple integrals in spherical coordinates
-
001 Introduction to triple integrals in spherical coordinates.html
00:00 -
002 Spherical coordinates.html
00:00 -
003 Spherical coordinates.mp4
00:00 -
004 Changing triple integrals to spherical coordinates.mp4
00:00 -
005 Finding volume.html
00:00 -
006 Finding volume.mp4
00:00 -
007 BONUS! Extra practice problems. ).html
00:00 -
Section Quiz
26 – Multiple Integrals – Change of variables
-
001 Introduction to change of variables.html
00:00 -
002 Jacobian for two variables.html
00:00 -
003 Jacobian for two variables.mp4
00:00 -
004 Jacobian for three variables.html
00:00 -
005 Jacobian for three variables.mp4
00:00 -
006 BONUS! Extra practice problems. ).html
00:00 -
Section Quiz
27 – Multiple Integrals – Applications of triple integrals
-
001 Introduction to applications of triple integrals.html
00:00 -
002 Triple integrals to find mass and center of mass.mp4
00:00 -
003 Moments of inertia.mp4
00:00 -
004 BONUS! Extra practice problems. ).html
00:00 -
Section Quiz
28 – Vectors – Introduction to vectors
-
001 Introduction to vectors.html
00:00 -
002 Vector from two points.mp4
00:00 -
003 Combinations of vectors.html
00:00 -
004 Combinations of vectors.mp4
00:00 -
005 Sum of two vectors.html
00:00 -
006 Sum of two vectors.mp4
00:00 -
007 Copying vectors and using them to find combinations.mp4
00:00 -
008 Unit vector in the direction of the given vector.mp4
00:00 -
009 Angle between a vector and the x-axis.mp4
00:00 -
010 Magnitude and angle of the resultant force.html
00:00 -
011 Magnitude and angle of the resultant force.mp4
00:00 -
012 BONUS! Extra practice problems. ).html
00:00 -
Section Quiz
29 – Vectors – Dot products
-
001 Introduction to dot products.html
00:00 -
002 Dot product of two vectors.html
00:00 -
003 Dot product of two vectors.mp4
00:00 -
004 Angle between two vectors.html
00:00 -
005 Angle between two vectors.mp4
00:00 -
006 Orthogonal, parallel or neither.html
00:00 -
007 Orthogonal, parallel or neither.mp4
00:00 -
008 Acute angle between the lines.html
00:00 -
009 Acute angle between the lines.mp4
00:00 -
010 Acute angles between the curves.html
00:00 -
011 Acute angles between the curves.mp4
00:00 -
012 Direction cosines and direction angles.html
00:00 -
013 Direction cosines and direction angles.mp4
00:00 -
014 Scalar equation of a line.html
00:00 -
015 Scalar equation of a line.mp4
00:00 -
016 Scalar equation of a plane.html
00:00 -
017 Scalar equation of a plane.mp4
00:00 -
018 Scalar and vector projections.html
00:00 -
019 Scalar and vector projections.mp4
00:00 -
020 BONUS! Extra practice problems. ).html
00:00 -
Section Quiz
30 – Vectors – Cross products
-
001 Introduction to cross products.html
00:00 -
002 Cross product of two vectors.html
00:00 -
003 Cross product of two vectors.mp4
00:00 -
004 Vector orthogonal to the plane.html
00:00 -
005 Vector orthogonal to the plane.mp4
00:00 -
006 Volume of the parallelepiped from vectors.html
00:00 -
007 Volume of the parallelepiped from vectors.mp4
00:00 -
008 Volume of the parallelepiped from adjacent edges.html
00:00 -
009 Volume of the parallelepiped from adjacent edges.mp4
00:00 -
010 Scalar triple product to prove vectors are coplanar.html
00:00 -
011 Scalar triple product to prove vectors are coplanar.mp4
00:00 -
012 BONUS! Extra practice problems. ).html
00:00 -
Section Quiz
31 – Vectors – Vector functions and space curves
-
001 Introduction to vector functions and space curves.html
00:00 -
002 Domain of a vector function.html
00:00 -
003 Domain of a vector function.mp4
00:00 -
004 Limit of a vector function.html
00:00 -
005 Limit of a vector function.mp4
00:00 -
006 Sketching the vector equation.mp4
00:00 -
007 Projections of the curve.html
00:00 -
008 Projections of the curve.mp4
00:00 -
009 Vector and parametric equations of a line segment.html
00:00 -
010 Vector and parametric equations of a line segment.mp4
00:00 -
011 Vector function for the curve of intersection of two surfaces.html
00:00 -
012 Vector function for the curve of intersection of two surfaces.mp4
00:00 -
013 BONUS! Extra practice problems. ).html
00:00 -
Section Quiz
32 – Vectors – Derivatives and integrals of vector functions
-
001 Introduction to derivatives and integrals of vector functions.html
00:00 -
002 Derivative of a vector function.html
00:00 -
003 Derivative of a vector function.mp4
00:00 -
004 Unit tangent vector.html
00:00 -
005 Unit tangent vector.mp4
00:00 -
006 Parametric equations of the tangent line.html
00:00 -
007 Parametric equations of the tangent line.mp4
00:00 -
008 Integral of a vector function.html
00:00 -
009 Integral of a vector function.mp4
00:00 -
010 BONUS! Extra practice problems. ).html
00:00 -
Section Quiz
33 – Vectors – Arc length and curvature
-
001 Introduction to arc length and curvature.html
00:00 -
002 Arc length of a vector function.html
00:00 -
003 Arc length of a vector function.mp4
00:00 -
004 Reparametrizing the curve.html
00:00 -
005 Reparametrizing the curve.mp4
00:00 -
006 Unit tangent and unit normal vectors.html
00:00 -
007 Unit tangent and unit normal vectors.mp4
00:00 -
008 Curvature.html
00:00 -
009 Curvature.mp4
00:00 -
010 Maximum curvature.html
00:00 -
011 Maximum curvature.mp4
00:00 -
012 Normal and osculating planes.html
00:00 -
013 Normal and osculating planes.mp4
00:00 -
014 BONUS! Extra practice problems. ).html
00:00 -
Section Quiz
34 – Vectors – Velocity and acceleration
-
001 Introduction to velocity and acceleration.html
00:00 -
002 Velocity and acceleration vectors.html
00:00 -
003 Velocity and acceleration vectors.mp4
00:00 -
004 Velocity, acceleration and speed, given position.html
00:00 -
005 Velocity, acceleration and speed, given position.mp4
00:00 -
006 Velocity and position given acceleration and initial conditions.mp4
00:00 -
007 Tangential and normal components of acceleration.html
00:00 -
008 Tangential and normal components of acceleration.mp4
00:00 -
009 BONUS! Extra practice problems. ).html
00:00 -
Section Quiz
35 – Vectors – Line integrals
-
001 Introduction to line integrals.html
00:00 -
002 Line integrals.html
00:00 -
003 Line integral of a curve.mp4
00:00 -
004 Line integral of a vector function.mp4
00:00 -
005 Conservative vector fields.html
00:00 -
006 Potential function of a conservative vector field.mp4
00:00 -
007 Potential function of a conservative vector field to evaluate a line integral.mp4
00:00 -
008 Independence of path.html
00:00 -
009 Independence of path.mp4
00:00 -
010 Work done by the force field.mp4
00:00 -
011 Open, connected, and simply-connected.mp4
00:00 -
012 BONUS! Extra practice problems. ).html
00:00 -
Section Quiz
36 – Vectors – Green’s theorem
-
001 Introduction to green’s theorem.html
00:00 -
002 Green’s theorem for one region.html
00:00 -
003 Green’s theorem for one region.mp4
00:00 -
004 Green’s theorem for two regions.html
00:00 -
005 Green’s theorem for two regions.mp4
00:00 -
006 BONUS! Extra practice problems. ).html
00:00 -
Section Quiz
37 – Vectors – Curl and divergence
-
001 Introduction to curl and divergence.html
00:00 -
002 Curl and divergence of a vector field.mp4
00:00 -
003 Potential function of a conservative vector field, three dimensions.mp4
00:00 -
004 BONUS! Extra practice problems. ).html
00:00 -
Section Quiz
38 – Vectors – Parametric surfaces and areas
-
001 Introduction to parametric surfaces and areas.html
00:00 -
002 Points on the surface.mp4
00:00 -
003 Surface of the vector equation.mp4
00:00 -
004 Parametric representation of the surface.mp4
00:00 -
005 Tangent plane to the parametric surface.mp4
00:00 -
006 Area of a surface.mp4
00:00 -
007 BONUS! Extra practice problems. ).html
00:00 -
Section Quiz
39 – Vectors – Surface integrals
-
001 Introduction to surface integrals.html
00:00 -
002 Surface integrals.mp4
00:00 -
003 BONUS! Extra practice problems. ).html
00:00 -
Section Quiz
40 – Vectors – Stokes’ and divergence theorem
-
001 Introduction to stokes’ and divergence theorem.html
00:00 -
002 Stokes’ theorem.mp4
00:00 -
003 Divergence theorem.mp4
00:00 -
004 BONUS! Extra practice problems. ).html
00:00 -
Section Quiz
41 – Final exam and wrap-up
-
001 Practice final exam #1 (optional).html
00:00 -
002 Practice final exam #2 (optional).html
00:00 -
003 Calculus 3 final exam.html
00:00 -
004 Wrap-up.mp4
00:00
Earn a certificate
Add this certificate to your resume to demonstrate your skills & increase your chances of getting noticed.