Machine Learning A-Z™: AI/ Python & R + ChatGPT Bonus (2023)
 
		About Course
Learn Machine Learning from scratch with this comprehensive course, completely free on Theetay! This course, originally from Udemy, is taught by a Data Scientist and Machine Learning expert, covering everything from basic concepts to advanced algorithms like Deep Learning.
Gain practical skills in Python and R, two of the most popular programming languages for Machine Learning. Choose the language that best suits your career goals, or learn both!
This course is packed with real-world case studies and hands-on exercises, allowing you to apply what you learn immediately. Explore topics like:
- Data Preprocessing
- Regression: Simple Linear Regression, Multiple Linear Regression, Polynomial Regression, SVR, Decision Tree Regression, Random Forest Regression
- Classification: Logistic Regression, K-NN, SVM, Kernel SVM, Naive Bayes, Decision Tree Classification, Random Forest Classification
- Clustering: K-Means, Hierarchical Clustering
- Association Rule Learning: Apriori, Eclat
- Reinforcement Learning: Upper Confidence Bound, Thompson Sampling
- Natural Language Processing: Bag-of-words model and algorithms for NLP
- Deep Learning: Artificial Neural Networks, Convolutional Neural Networks
- Dimensionality Reduction: PCA, LDA, Kernel PCA
- Model Selection & Boosting: k-fold Cross Validation, Parameter Tuning, Grid Search, XGBoost
This course is perfect for beginners and experienced professionals alike. Access valuable resources, including Python and R code templates, to build your own Machine Learning projects. Start your Machine Learning journey today, completely free on Theetay!
What Will You Learn?
- Master Machine Learning on Python & R
- Have a great intuition of many Machine Learning models
- Make accurate predictions
- Make powerful analysis
- Make robust Machine Learning models
- Create strong added value to your business
- Use Machine Learning for personal purpose
- Handle specific topics like Reinforcement Learning, NLP and Deep Learning
- Handle advanced techniques like Dimensionality Reduction
- Know which Machine Learning model to choose for each type of problem
- Build an army of powerful Machine Learning models and know how to combine them to solve any problem
Course Content
01 – Welcome to the course! Here we will help you get started in the best conditions
- 
										001 Welcome Challenge!.html00:00
- 
										002 Machine Learning Demo – Get Excited!.mp400:00
- 
										003 Get all the Datasets, Codes and Slides here.html00:00
- 
										004 How to use the ML A-Z folder & Google Colab.mp400:00
- 
										005 Installing R and R Studio (Mac, Linux & Windows).mp400:00
- 
										006 BONUS Use ChatGPT to Boost your ML Skills.html00:00
- 
										Section Quiz
02 – ——————– Part 1 Data Preprocessing ——————–
- 
										001 Welcome to Part 1 – Data Preprocessing.html00:00
- 
										002 The Machine Learning process.mp400:00
- 
										003 Splitting the data into a Training and Test set.mp400:00
- 
										004 Feature Scaling.mp400:00
- 
										Section Quiz
03 – Data Preprocessing in Python
- 
										001 Getting Started – Step 1.mp400:00
- 
										002 Getting Started – Step 2.mp400:00
- 
										003 Importing the Libraries.mp400:00
- 
										004 Importing the Dataset – Step 1.mp400:00
- 
										005 Importing the Dataset – Step 2.mp400:00
- 
										006 Importing the Dataset – Step 3.mp400:00
- 
										007 For Python learners, summary of Object-oriented programming classes & objects.html00:00
- 
										008 Taking care of Missing Data – Step 1.mp400:00
- 
										009 Taking care of Missing Data – Step 2.mp400:00
- 
										010 Encoding Categorical Data – Step 1.mp400:00
- 
										011 Encoding Categorical Data – Step 2.mp400:00
- 
										012 Encoding Categorical Data – Step 3.mp400:00
- 
										013 Splitting the dataset into the Training set and Test set – Step 1.mp400:00
- 
										014 Splitting the dataset into the Training set and Test set – Step 2.mp400:00
- 
										015 Splitting the dataset into the Training set and Test set – Step 3.mp400:00
- 
										016 Feature Scaling – Step 1.mp400:00
- 
										017 Feature Scaling – Step 2.mp400:00
- 
										018 Feature Scaling – Step 3.mp400:00
- 
										019 Feature Scaling – Step 4.mp400:00
- 
										Section Quiz
04 – Data Preprocessing in R
- 
										001 Getting Started.mp400:00
- 
										002 Dataset Description.mp400:00
- 
										003 Importing the Dataset.mp400:00
- 
										004 Taking care of Missing Data.mp400:00
- 
										005 Encoding Categorical Data.mp400:00
- 
										006 Splitting the dataset into the Training set and Test set – Step 1.mp400:00
- 
										007 Splitting the dataset into the Training set and Test set – Step 2.mp400:00
- 
										008 Feature Scaling – Step 1.mp400:00
- 
										009 Feature Scaling – Step 2.mp400:00
- 
										010 Data Preprocessing Template.mp400:00
- 
										Section Quiz
05 – ——————– Part 2 Regression ——————–
- 
										001 Welcome to Part 2 – Regression.html00:00
06 – Simple Linear Regression
- 
										002 Ordinary Least Squares.mp400:00
- 
										003 Simple Linear Regression in Python – Step 1a.mp400:00
- 
										004 Simple Linear Regression in Python – Step 1b.mp400:00
- 
										005 Simple Linear Regression in Python – Step 2a.mp400:00
- 
										006 Simple Linear Regression in Python – Step 2b.mp400:00
- 
										007 Simple Linear Regression in Python – Step 3.mp400:00
- 
										008 Simple Linear Regression in Python – Step 4a.mp400:00
- 
										009 Simple Linear Regression in Python – Step 4b.mp400:00
- 
										010 Simple Linear Regression in Python – Additional Lecture.html00:00
- 
										011 Simple Linear Regression in R – Step 1.mp400:00
- 
										012 Simple Linear Regression in R – Step 2.mp400:00
- 
										013 Simple Linear Regression in R – Step 3.mp400:00
- 
										014 Simple Linear Regression in R – Step 4a.mp400:00
- 
										015 Simple Linear Regression in R – Step 4b.mp400:00
- 
										Section Quiz
07 – Multiple Linear Regression
- 
										001 Dataset + Business Problem Description.mp400:00
- 
										002 Multiple Linear Regression Intuition.mp400:00
- 
										003 Assumptions of Linear Regression.mp400:00
- 
										004 Multiple Linear Regression Intuition – Step 3.mp400:00
- 
										005 Multiple Linear Regression Intuition – Step 4.mp400:00
- 
										006 Understanding the P-Value.mp400:00
- 
										007 Multiple Linear Regression Intuition – Step 5.mp400:00
- 
										008 Multiple Linear Regression in Python – Step 1a.mp400:00
- 
										009 Multiple Linear Regression in Python – Step 1b.mp400:00
- 
										010 Multiple Linear Regression in Python – Step 2a.mp400:00
- 
										011 Multiple Linear Regression in Python – Step 2b.mp400:00
- 
										012 Multiple Linear Regression in Python – Step 3a.mp400:00
- 
										013 Multiple Linear Regression in Python – Step 3b.mp400:00
- 
										014 Multiple Linear Regression in Python – Step 4a.mp400:00
- 
										015 Multiple Linear Regression in Python – Step 4b.mp400:00
- 
										016 Multiple Linear Regression in Python – Backward Elimination.html00:00
- 
										017 Multiple Linear Regression in Python – EXTRA CONTENT.html00:00
- 
										018 Multiple Linear Regression in R – Step 1a.mp400:00
- 
										019 Multiple Linear Regression in R – Step 1b.mp400:00
- 
										020 Multiple Linear Regression in R – Step 2a.mp400:00
- 
										021 Multiple Linear Regression in R – Step 2b.mp400:00
- 
										022 Multiple Linear Regression in R – Step 3.mp400:00
- 
										023 Multiple Linear Regression in R – Backward Elimination – HOMEWORK !.mp400:00
- 
										024 Multiple Linear Regression in R – Backward Elimination – Homework Solution.mp400:00
- 
										025 Multiple Linear Regression in R – Automatic Backward Elimination.html00:00
- 
										external-links.txt00:00
- 
										Section Quiz
08 – Polynomial Regression
- 
										001 Polynomial Regression Intuition.mp400:00
- 
										002 Polynomial Regression in Python – Step 1a.mp400:00
- 
										003 Polynomial Regression in Python – Step 1b.mp400:00
- 
										004 Polynomial Regression in Python – Step 2a.mp400:00
- 
										005 Polynomial Regression in Python – Step 2b.mp400:00
- 
										006 Polynomial Regression in Python – Step 3a.mp400:00
- 
										007 Polynomial Regression in Python – Step 3b.mp400:00
- 
										008 Polynomial Regression in Python – Step 4a.mp400:00
- 
										009 Polynomial Regression in Python – Step 4b.mp400:00
- 
										010 Polynomial Regression in R – Step 1a.mp400:00
- 
										011 Polynomial Regression in R – Step 1b.mp400:00
- 
										012 Polynomial Regression in R – Step 2a.mp400:00
- 
										013 Polynomial Regression in R – Step 2b.mp400:00
- 
										014 Polynomial Regression in R – Step 3a.mp400:00
- 
										015 Polynomial Regression in R – Step 3b.mp400:00
- 
										016 Polynomial Regression in R – Step 3c.mp400:00
- 
										017 Polynomial Regression in R – Step 4a.mp400:00
- 
										018 Polynomial Regression in R – Step 4b.mp400:00
- 
										019 R Regression Template – Step 1.mp400:00
- 
										020 R Regression Template – Step 2.mp400:00
- 
										Section Quiz
09 – Support Vector Regression (SVR)
- 
										001 SVR Intuition (Updated!).mp400:00
- 
										002 Heads-up on non-linear SVR.mp400:00
- 
										003 SVR in Python – Step 1a.mp400:00
- 
										004 SVR in Python – Step 1b.mp400:00
- 
										005 SVR in Python – Step 2a.mp400:00
- 
										006 SVR in Python – Step 2b.mp400:00
- 
										007 SVR in Python – Step 2c.mp400:00
- 
										008 SVR in Python – Step 3.mp400:00
- 
										009 SVR in Python – Step 4.mp400:00
- 
										010 SVR in Python – Step 5a.mp400:00
- 
										011 SVR in Python – Step 5b.mp400:00
- 
										012 SVR in R – Step 1.mp400:00
- 
										013 SVR in R – Step 2.mp400:00
- 
										Section Quiz
10 – Decision Tree Regression
- 
										001 Decision Tree Regression Intuition.mp400:00
- 
										002 Decision Tree Regression in Python – Step 1a.mp400:00
- 
										003 Decision Tree Regression in Python – Step 1b.mp400:00
- 
										004 Decision Tree Regression in Python – Step 2.mp400:00
- 
										005 Decision Tree Regression in Python – Step 3.mp400:00
- 
										006 Decision Tree Regression in Python – Step 4.mp400:00
- 
										007 Decision Tree Regression in R – Step 1.mp400:00
- 
										008 Decision Tree Regression in R – Step 2.mp400:00
- 
										009 Decision Tree Regression in R – Step 3.mp400:00
- 
										010 Decision Tree Regression in R – Step 4.mp400:00
- 
										Section Quiz
11 – Random Forest Regression
- 
										001 Random Forest Regression Intuition.mp400:00
- 
										002 Random Forest Regression in Python – Step 1.mp400:00
- 
										003 Random Forest Regression in Python – Step 2.mp400:00
- 
										004 Random Forest Regression in R – Step 1.mp400:00
- 
										005 Random Forest Regression in R – Step 2.mp400:00
- 
										006 Random Forest Regression in R – Step 3.mp400:00
- 
										Section Quiz
12 – Evaluating Regression Models Performance
- 
										001 R-Squared Intuition.mp400:00
- 
										002 Adjusted R-Squared Intuition.mp400:00
- 
										Section Quiz
13 – Regression Model Selection in Python
- 
										001 Make sure you have this Model Selection folder ready.html00:00
- 
										002 Preparation of the Regression Code Templates – Step 1.mp400:00
- 
										003 Preparation of the Regression Code Templates – Step 2.mp400:00
- 
										004 Preparation of the Regression Code Templates – Step 3.mp400:00
- 
										005 Preparation of the Regression Code Templates – Step 4.mp400:00
- 
										006 THE ULTIMATE DEMO OF THE POWERFUL REGRESSION CODE TEMPLATES IN ACTION! – STEP 1.mp400:00
- 
										007 THE ULTIMATE DEMO OF THE POWERFUL REGRESSION CODE TEMPLATES IN ACTION! – STEP 2.mp400:00
- 
										008 Conclusion of Part 2 – Regression.html00:00
- 
										Section Quiz
14 – Regression Model Selection in R
- 
										001 Evaluating Regression Models Performance – Homework’s Final Part.mp400:00
- 
										002 Interpreting Linear Regression Coefficients.mp400:00
- 
										003 Conclusion of Part 2 – Regression.html00:00
- 
										Section Quiz
15 – ——————– Part 3 Classification ——————–
- 
										001 Welcome to Part 3 – Classification.html00:00
16 – Logistic Regression
- 
										002 Logistic Regression Intuition.mp400:00
- 
										003 Maximum Likelihood.mp400:00
- 
										004 Logistic Regression in Python – Step 1a.mp400:00
- 
										005 Logistic Regression in Python – Step 1b.mp400:00
- 
										006 Logistic Regression in Python – Step 2a.mp400:00
- 
										007 Logistic Regression in Python – Step 2b.mp400:00
- 
										008 Logistic Regression in Python – Step 3a.mp400:00
- 
										009 Logistic Regression in Python – Step 3b.mp400:00
- 
										010 Logistic Regression in Python – Step 4a.mp400:00
- 
										011 Logistic Regression in Python – Step 4b.mp400:00
- 
										012 Logistic Regression in Python – Step 5.mp400:00
- 
										013 Logistic Regression in Python – Step 6a.mp400:00
- 
										014 Logistic Regression in Python – Step 6b.mp400:00
- 
										015 Logistic Regression in Python – Step 7a.mp400:00
- 
										016 Logistic Regression in Python – Step 7b.mp400:00
- 
										017 Logistic Regression in Python – Step 7c.mp400:00
- 
										018 Logistic Regression in Python – Step 7 (Colour-blind friendly image).html00:00
- 
										019 Logistic Regression in R – Step 1.mp400:00
- 
										020 Logistic Regression in R – Step 2.mp400:00
- 
										021 Logistic Regression in R – Step 3.mp400:00
- 
										022 Logistic Regression in R – Step 4.mp400:00
- 
										023 Warning – Update.html00:00
- 
										024 Logistic Regression in R – Step 5a.mp400:00
- 
										025 Logistic Regression in R – Step 5b.mp400:00
- 
										026 Logistic Regression in R – Step 5c.mp400:00
- 
										027 Logistic Regression in R – Step 5 (Colour-blind friendly image).html00:00
- 
										028 R Classification Template.mp400:00
- 
										029 Machine Learning Regression and Classification BONUS.html00:00
- 
										030 EXTRA CONTENT Logistic Regression Practical Case Study.html00:00
- 
										Section Quiz
17 – K-Nearest Neighbors (K-NN)
- 
										001 K-Nearest Neighbor Intuition.mp400:00
- 
										002 K-NN in Python – Step 1.mp400:00
- 
										003 K-NN in Python – Step 2.mp400:00
- 
										004 K-NN in Python – Step 3.mp400:00
- 
										005 K-NN in R – Step 1.mp400:00
- 
										006 K-NN in R – Step 2.mp400:00
- 
										007 K-NN in R – Step 3.mp400:00
- 
										Section Quiz
18 – Support Vector Machine (SVM)
- 
										001 SVM Intuition.mp400:00
- 
										002 SVM in Python – Step 1.mp400:00
- 
										003 SVM in Python – Step 2.mp400:00
- 
										004 SVM in Python – Step 3.mp400:00
- 
										005 SVM in R – Step 1.mp400:00
- 
										006 SVM in R – Step 2.mp400:00
- 
										Section Quiz
19 – Kernel SVM
- 
										001 Kernel SVM Intuition.mp400:00
- 
										002 Mapping to a higher dimension.mp400:00
- 
										003 The Kernel Trick.mp400:00
- 
										004 Types of Kernel Functions.mp400:00
- 
										005 Non-Linear Kernel SVR (Advanced).mp400:00
- 
										006 Kernel SVM in Python – Step 1.mp400:00
- 
										007 Kernel SVM in Python – Step 2.mp400:00
- 
										008 Kernel SVM in R – Step 1.mp400:00
- 
										009 Kernel SVM in R – Step 2.mp400:00
- 
										010 Kernel SVM in R – Step 3.mp400:00
- 
										Section Quiz
20 – Naive Bayes
- 
										001 Bayes Theorem.mp400:00
- 
										002 Naive Bayes Intuition.mp400:00
- 
										003 Naive Bayes Intuition (Challenge Reveal).mp400:00
- 
										004 Naive Bayes Intuition (Extras).mp400:00
- 
										005 Naive Bayes in Python – Step 1.mp400:00
- 
										006 Naive Bayes in Python – Step 2.mp400:00
- 
										007 Naive Bayes in Python – Step 3.mp400:00
- 
										008 Naive Bayes in R – Step 1.mp400:00
- 
										009 Naive Bayes in R – Step 2.mp400:00
- 
										010 Naive Bayes in R – Step 3.mp400:00
- 
										Section Quiz
21 – Decision Tree Classification
- 
										001 Decision Tree Classification Intuition.mp400:00
- 
										002 Decision Tree Classification in Python – Step 1.mp400:00
- 
										003 Decision Tree Classification in Python – Step 2.mp400:00
- 
										004 Decision Tree Classification in R – Step 1.mp400:00
- 
										005 Decision Tree Classification in R – Step 2.mp400:00
- 
										006 Decision Tree Classification in R – Step 3.mp400:00
- 
										Section Quiz
22 – Random Forest Classification
- 
										001 Random Forest Classification Intuition.mp400:00
- 
										002 Random Forest Classification in Python – Step 1.mp400:00
- 
										003 Random Forest Classification in Python – Step 2.mp400:00
- 
										004 Random Forest Classification in R – Step 1.mp400:00
- 
										005 Random Forest Classification in R – Step 2.mp400:00
- 
										006 Random Forest Classification in R – Step 3.mp400:00
- 
										Section Quiz
23 – Classification Model Selection in Python
- 
										001 Make sure you have this Model Selection folder ready.html00:00
- 
										002 Confusion Matrix & Accuracy Ratios.mp400:00
- 
										003 ULTIMATE DEMO OF THE POWERFUL CLASSIFICATION CODE TEMPLATES IN ACTION – STEP 1.mp400:00
- 
										004 ULTIMATE DEMO OF THE POWERFUL CLASSIFICATION CODE TEMPLATES IN ACTION – STEP 2.mp400:00
- 
										005 ULTIMATE DEMO OF THE POWERFUL CLASSIFICATION CODE TEMPLATES IN ACTION – STEP 3.mp400:00
- 
										006 ULTIMATE DEMO OF THE POWERFUL CLASSIFICATION CODE TEMPLATES IN ACTION – STEP 4.mp400:00
- 
										Section Quiz
24 – Evaluating Classification Models Performance
- 
										001 False Positives & False Negatives.mp400:00
- 
										002 Accuracy Paradox.mp400:00
- 
										003 CAP Curve.mp400:00
- 
										004 CAP Curve Analysis.mp400:00
- 
										005 Conclusion of Part 3 – Classification.html00:00
- 
										Section Quiz
25 – ——————– Part 4 Clustering ——————–
- 
										001 Welcome to Part 4 – Clustering.html00:00
26 – K-Means Clustering
- 
										002 K-Means Clustering Intuition.mp400:00
- 
										003 The Elbow Method.mp400:00
- 
										004 K-Means++.mp400:00
- 
										005 K-Means Clustering in Python – Step 1a.mp400:00
- 
										006 K-Means Clustering in Python – Step 1b.mp400:00
- 
										007 K-Means Clustering in Python – Step 2a.mp400:00
- 
										008 K-Means Clustering in Python – Step 2b.mp400:00
- 
										009 K-Means Clustering in Python – Step 3a.mp400:00
- 
										010 K-Means Clustering in Python – Step 3b.mp400:00
- 
										011 K-Means Clustering in Python – Step 3c.mp400:00
- 
										012 K-Means Clustering in Python – Step 4.mp400:00
- 
										013 K-Means Clustering in Python – Step 5a.mp400:00
- 
										014 K-Means Clustering in Python – Step 5b.mp400:00
- 
										015 K-Means Clustering in Python – Step 5c.mp400:00
- 
										016 K-Means Clustering in R – Step 1.mp400:00
- 
										017 K-Means Clustering in R – Step 2.mp400:00
- 
										Section Quiz
27 – Hierarchical Clustering
- 
										001 Hierarchical Clustering Intuition.mp400:00
- 
										002 Hierarchical Clustering How Dendrograms Work.mp400:00
- 
										003 Hierarchical Clustering Using Dendrograms.mp400:00
- 
										004 Hierarchical Clustering in Python – Step 1.mp400:00
- 
										005 Hierarchical Clustering in Python – Step 2a.mp400:00
- 
										006 Hierarchical Clustering in Python – Step 2b.mp400:00
- 
										007 Hierarchical Clustering in Python – Step 2c.mp400:00
- 
										008 Hierarchical Clustering in Python – Step 3a.mp400:00
- 
										009 Hierarchical Clustering in Python – Step 3b.mp400:00
- 
										010 Hierarchical Clustering in R – Step 1.mp400:00
- 
										011 Hierarchical Clustering in R – Step 2.mp400:00
- 
										012 Hierarchical Clustering in R – Step 3.mp400:00
- 
										013 Hierarchical Clustering in R – Step 4.mp400:00
- 
										014 Hierarchical Clustering in R – Step 5.mp400:00
- 
										015 Conclusion of Part 4 – Clustering.html00:00
- 
										Section Quiz
28 – ——————– Part 5 Association Rule Learning ——————–
- 
										001 Welcome to Part 5 – Association Rule Learning.html00:00
29 – Apriori
- 
										002 Apriori in Python – Step 1.mp400:00
- 
										003 Apriori in Python – Step 2.mp400:00
- 
										004 Apriori in Python – Step 3.mp400:00
- 
										005 Apriori in Python – Step 4.mp400:00
- 
										006 Apriori in R – Step 1.mp400:00
- 
										007 Apriori in R – Step 2.mp400:00
- 
										008 Apriori in R – Step 3.mp400:00
- 
										Section Quiz
30 – Eclat
- 
										001 Eclat Intuition.mp400:00
- 
										002 Eclat in Python.mp400:00
- 
										003 Eclat in R.mp400:00
- 
										Section Quiz
31 – ——————– Part 6 Reinforcement Learning ——————–
- 
										001 Welcome to Part 6 – Reinforcement Learning.html00:00
32 – Upper Confidence Bound (UCB)
- 
										002 Upper Confidence Bound (UCB) Intuition.mp400:00
- 
										003 Upper Confidence Bound in Python – Step 1.mp400:00
- 
										004 Upper Confidence Bound in Python – Step 2.mp400:00
- 
										005 Upper Confidence Bound in Python – Step 3.mp400:00
- 
										006 Upper Confidence Bound in Python – Step 4.mp400:00
- 
										007 Upper Confidence Bound in Python – Step 5.mp400:00
- 
										008 Upper Confidence Bound in Python – Step 6.mp400:00
- 
										009 Upper Confidence Bound in Python – Step 7.mp400:00
- 
										010 Upper Confidence Bound in R – Step 1.mp400:00
- 
										011 Upper Confidence Bound in R – Step 2.mp400:00
- 
										012 Upper Confidence Bound in R – Step 3.mp400:00
- 
										013 Upper Confidence Bound in R – Step 4.mp400:00
- 
										Section Quiz
33 – Thompson Sampling
- 
										001 Thompson Sampling Intuition.mp400:00
- 
										002 Algorithm Comparison UCB vs Thompson Sampling.mp400:00
- 
										003 Thompson Sampling in Python – Step 1.mp400:00
- 
										004 Thompson Sampling in Python – Step 2.mp400:00
- 
										005 Thompson Sampling in Python – Step 3.mp400:00
- 
										006 Thompson Sampling in Python – Step 4.mp400:00
- 
										007 Additional Resource for this Section.html00:00
- 
										008 Thompson Sampling in R – Step 1.mp400:00
- 
										009 Thompson Sampling in R – Step 2.mp400:00
- 
										Section Quiz
34 – ——————– Part 7 Natural Language Processing ——————–
- 
										001 Welcome to Part 7 – Natural Language Processing.html00:00
- 
										002 NLP Intuition.mp400:00
- 
										003 Types of Natural Language Processing.mp400:00
- 
										004 Classical vs Deep Learning Models.mp400:00
- 
										005 Bag-Of-Words Model.mp400:00
- 
										006 Natural Language Processing in Python – Step 1.mp400:00
- 
										007 Natural Language Processing in Python – Step 2.mp400:00
- 
										008 Natural Language Processing in Python – Step 3.mp400:00
- 
										009 Natural Language Processing in Python – Step 4.mp400:00
- 
										010 Natural Language Processing in Python – Step 5.mp400:00
- 
										011 Natural Language Processing in Python – Step 6.mp400:00
- 
										012 Natural Language Processing in Python – BONUS.html00:00
- 
										013 Homework Challenge.html00:00
- 
										014 Natural Language Processing in R – Step 1.mp400:00
- 
										015 Warning – Update.html00:00
- 
										016 Natural Language Processing in R – Step 2.mp400:00
- 
										017 Natural Language Processing in R – Step 3.mp400:00
- 
										018 Natural Language Processing in R – Step 4.mp400:00
- 
										019 Natural Language Processing in R – Step 5.mp400:00
- 
										020 Natural Language Processing in R – Step 6.mp400:00
- 
										021 Natural Language Processing in R – Step 7.mp400:00
- 
										022 Natural Language Processing in R – Step 8.mp400:00
- 
										023 Natural Language Processing in R – Step 9.mp400:00
- 
										024 Natural Language Processing in R – Step 10.mp400:00
- 
										025 Homework Challenge.html00:00
- 
										Section Quiz
35 – ——————– Part 8 Deep Learning ——————–
- 
										001 Welcome to Part 8 – Deep Learning.html00:00
- 
										002 What is Deep Learning.mp400:00
- 
										Section Quiz
36 – Artificial Neural Networks
- 
										001 Plan of attack.mp400:00
- 
										002 The Neuron.mp400:00
- 
										003 The Activation Function.mp400:00
- 
										004 How do Neural Networks work.mp400:00
- 
										005 How do Neural Networks learn.mp400:00
- 
										006 Gradient Descent.mp400:00
- 
										007 Stochastic Gradient Descent.mp400:00
- 
										008 Backpropagation.mp400:00
- 
										009 Business Problem Description.mp400:00
- 
										010 ANN in Python – Step 1.mp400:00
- 
										011 ANN in Python – Step 2.mp400:00
- 
										012 ANN in Python – Step 3.mp400:00
- 
										013 ANN in Python – Step 4.mp400:00
- 
										014 ANN in Python – Step 5.mp400:00
- 
										015 ANN in R – Step 1.mp400:00
- 
										016 ANN in R – Step 2.mp400:00
- 
										017 ANN in R – Step 3.mp400:00
- 
										018 ANN in R – Step 4 (Last step).mp400:00
- 
										019 Deep Learning Additional Content.html00:00
- 
										020 EXTRA CONTENT ANN Case Study.html00:00
- 
										Section Quiz
37 – Convolutional Neural Networks
- 
										001 Plan of attack.mp400:00
- 
										002 What are convolutional neural networks.mp400:00
- 
										003 Step 1 – Convolution Operation.mp400:00
- 
										004 Step 1(b) – ReLU Layer.mp400:00
- 
										005 Step 2 – Pooling.mp400:00
- 
										006 Step 3 – Flattening.mp400:00
- 
										007 Step 4 – Full Connection.mp400:00
- 
										008 Summary.mp400:00
- 
										009 Softmax & Cross-Entropy.mp400:00
- 
										010 CNN in Python – Step 1.mp400:00
- 
										011 CNN in Python – Step 2.mp400:00
- 
										012 CNN in Python – Step 3.mp400:00
- 
										013 CNN in Python – Step 4.mp400:00
- 
										014 CNN in Python – Step 5.mp400:00
- 
										015 CNN in Python – FINAL DEMO!.mp400:00
- 
										016 Deep Learning Additional Content #2.html00:00
- 
										Section Quiz
38 – ——————– Part 9 Dimensionality Reduction ——————–
- 
										001 Welcome to Part 9 – Dimensionality Reduction.html00:00
39 – Principal Component Analysis (PCA)
- 
										002 PCA in Python – Step 1.mp400:00
- 
										003 PCA in Python – Step 2.mp400:00
- 
										004 PCA in R – Step 1.mp400:00
- 
										005 PCA in R – Step 2.mp400:00
- 
										006 PCA in R – Step 3.mp400:00
- 
										Section Quiz
40 – Linear Discriminant Analysis (LDA)
- 
										001 Linear Discriminant Analysis (LDA) Intuition.mp400:00
- 
										002 LDA in Python.mp400:00
- 
										003 LDA in R.mp400:00
- 
										Section Quiz
41 – Kernel PCA
- 
										001 Kernel PCA in Python.mp400:00
- 
										002 Kernel PCA in R.mp400:00
- 
										Section Quiz
42 – ——————– Part 10 Model Selection & Boosting ——————–
- 
										001 Welcome to Part 10 – Model Selection & Boosting.html00:00
43 – Model Selection
- 
										002 Grid Search in Python.mp400:00
- 
										003 k-Fold Cross Validation in R.mp400:00
- 
										004 Grid Search in R.mp400:00
- 
										Section Quiz
44 – XGBoost
- 
										001 XGBoost in Python.mp400:00
- 
										002 Model Selection and Boosting Additional Content.html00:00
- 
										003 XGBoost in R.mp400:00
- 
										Section Quiz
45 – Exclusive Offer
- 
										001 OUR SPECIAL OFFER.html00:00
Earn a certificate
Add this certificate to your resume to demonstrate your skills & increase your chances of getting noticed.
 
				 
 