Fundamental Skills in Bioinformatics
About Course
Learn Fundamental Skills in Bioinformatics for Free!
This comprehensive course, offered by King Abdullah University of Science and Technology, equips you with the essential skills needed to excel in bioinformatics and data analysis. Designed for biology and biomedical students with limited programming or quantitative analysis experience, this course provides a practical and accessible introduction to the field.
Through hands-on learning, you’ll develop key programming skills in R and Python, gain proficiency in using Unix servers, and strengthen your understanding of basic statistical concepts. This course is perfect for those who want to:
- Gain a solid foundation in bioinformatics.
- Develop essential programming and data analysis skills.
- Prepare for a career in research, analysis, or bioinformatics.
This course is completely free and available on platforms like Udemy, Udacity, Coursera, MasterClass, NearPeer, and more. Start your journey into the exciting world of bioinformatics today!
Course Content
Fundamental Skills in Bioinformatics
-
A Message from the Professor
-
003 01_brief-introduction-to-the-course.mp4
00:00 -
009 02_lecture-introduction-to-rstudio.mp4
00:00 -
010 03_setting-up-r_index.html
00:00 -
013 04_introduction-to-r-quiz_exam.html
00:00 -
017 05_coding-lecture-first-contact-with-rstudio.mp4
00:00 -
020 01_introduction.mp4
00:00 -
023 02_lecture-data-types-in-r.mp4
00:00 -
026 03_lecture-data-structures-in-r.mp4
00:00 -
027 04_data-types-in-r-quiz_exam.html
00:00 -
031 05_coding-lecture-data-types-in-r-atomic-and-vectors.mp4
00:00 -
035 06_coding-lecture-data-types-in-r-lists-and-matrices.mp4
00:00 -
039 07_coding-lecture-data-types-in-r-data-frames.mp4
00:00 -
042 01_lecture-introduction-to-control-flow.mp4
00:00 -
045 02_lecture-loops.mp4
00:00 -
046 03_control-flow-in-r-quiz_exam.html
00:00 -
050 04_coding-lecture-if-statements.mp4
00:00 -
054 05_coding-lecture-loop-statements.mp4
00:00 -
057 01_lecture-loading-and-writing.mp4
00:00 -
058 02_loading-and-writing-in-r-quiz_exam.html
00:00 -
063 03_coding-lecture-loading-and-writing.mp4
00:00 -
068 01_basics-where-to-learn-more.mp4
00:00 -
074 02_available-data-sets-to-be-used-in-the-course_instructions.html
00:00 -
080 01_introduction-to-module-2.mp4
00:00 -
087 02_coding-lecture-logical-vectors-part-1.mp4
00:00 -
091 03_coding-lecture-logical-vectors-part-2.mp4
00:00 -
092 04_how-do-r-programming-assignments-work_instructions.html
00:00 -
093 05_programming-assignment-basics-quiz_quiz.html
00:00 -
096 01_lecture-data-quality-control.mp4
00:00 -
100 02_coding-lecture-quality-control.mp4
00:00 -
103 01_lecture-exploratory-data-analysis.mp4
00:00 -
107 02_coding-lecture-eda-part-1.mp4
00:00 -
111 03_coding-lecture-eda-part-2.mp4
00:00 -
112 04_exploratory-data-analysis-and-visualization-in-r_exam.html
00:00 -
115 01_lecture-correlation.mp4
00:00 -
119 02_coding-lecture-correlation-in-r.mp4
00:00 -
122 01_lecture-linear-models.mp4
00:00 -
126 02_coding-lecture-example-of-a-linear-model.mp4
00:00 -
130 03_coding-lecture-evaluation-of-a-linear-model-in-r.mp4
00:00 -
133 01_lecture-t-test-anova.mp4
00:00 -
137 02_coding-lecture-t-test.mp4
00:00 -
141 03_coding-lecture-anova.mp4
00:00 -
145 01_introduction-to-the-dataset-data-set-4.mp4
00:00 -
149 02_guided-analysis.mp4
00:00 -
152 01_lecture-r-packages.mp4
00:00 -
158 02_lecture-python-and-r.mp4
00:00 -
161 01_the-python-ecosystem.mp4
00:00 -
164 02_python-installation-and-environments.mp4
00:00 -
167 03_jupyter-lab.mp4
00:00 -
170 01_lecture-python-native-data-structures.mp4
00:00 -
174 02_coding-lecture-fundamentals-in-data-types.mp4
00:00 -
178 03_coding-lecture-lists-and-tuples.mp4
00:00 -
182 04_coding-lecture-sets-and-dictionaries.mp4
00:00 -
183 05_python-primitive-values-and-data-structures_exam.html
00:00 -
186 01_lecture-flow-control-and-functions.mp4
00:00 -
190 02_coding-lecture-if-conditions-for-and-while-loops.mp4
00:00 -
194 03_coding-lecture-declare-and-using-functions-in-python.mp4
00:00 -
195 04_python-syntax-for-if-statements-and-functions_exam.html
00:00 -
198 01_lecture-overview-of-modules-in-python.mp4
00:00 -
201 02_lecture-numpy.mp4
00:00 -
205 03_coding-lecture-numpy.mp4
00:00 -
206 04_the-numpy-package_exam.html
00:00 -
209 05_lecture-pandas.mp4
00:00 -
213 06_coding-lecture-pandas.mp4
00:00 -
217 07_coding-lecture-pandas-for-data-exploration.mp4
00:00 -
218 08_the-pandas-package_exam.html
00:00 -
222 09_coding-lecture-visualization.mp4
00:00 -
227 01_overview-of-the-week.mp4
00:00 -
230 02_lecture-introduction-to-the-case-study.mp4
00:00 -
233 01_lecture-rna-seq-technology-and-data-normalisation.mp4
00:00 -
238 02_relevant-material-for-week-4_instructions.html
00:00 -
250 03_coding-lecture-loading-and-normalizing-rna-seq-data.mp4
00:00 -
253 04_lecture-principal-component-analysis.mp4
00:00 -
256 05_coding-lecture-pca-analysis-in-r-for-rna-seq-data.mp4
00:00 -
259 06_lecture-finding-differentially-expressed-genes.mp4
00:00 -
263 07_coding-lecture-differential-expression-analysis-in-r.mp4
00:00 -
266 01_lecture-from-rna-seq-to-scrna-seq.mp4
00:00 -
269 02_lecture-representing-scrna-seq-experiments-in-python.mp4
00:00 -
276 03_coding-lecture-loading-a-scrna-seq-experiment-in-python.mp4
00:00 -
277 04_lecture-representing-scrna-seq-experiments-in-python_exam.html
00:00 -
280 05_lecture-preprocessing-scrna-seq-data.mp4
00:00 -
286 06_coding-lecture-scrna-seq-preprocessing.mp4
00:00 -
287 07_scrna-seq-preprocessing_exam.html
00:00 -
290 08_lecture-umap-and-dimensionality-reduction-in-single-cell-studies.mp4
00:00 -
293 09_lecture-cell-type-identification.mp4
00:00 -
298 10_coding-lecture-clustering-and-cell-type-identification-with-python.mp4
00:00 -
299 11_clustering-and-cell-type-indentification-with-python_exam.html
00:00 -
300 12_reference-resources-for-single-cell-analysis-in-python_instructions.html
00:00 -
305 13_coding-lecture-scrna-seq-analysis-in-r.mp4
00:00 -
308 01_lecture-bioai.mp4
00:00 -
links.txt
00:00 -
Section Quiz
Earn a certificate
Add this certificate to your resume to demonstrate your skills & increase your chances of getting noticed.