Data Science Statistics and Machine Learning Specialization

Wishlist Share
Share Course
Page Link
Share On Social Media

About Course

Data Science Course: Statistics and Machine Learning Specialization – FREE!

Boost your data science career with the **Statistics and Machine Learning Specialization** from **Johns Hopkins University**, now available **completely free** on Theetay. This specialization builds on the “Data Science: Foundations using R Specialization” course, diving deeper into **statistical inference, regression models, machine learning, and data product development**.

Through five engaging courses, you’ll learn how to analyze data, build predictive models, and develop data products. This specialization is perfect for **data scientists, aspiring data scientists, and anyone interested in data analysis**. By the end, you’ll be equipped to tackle real-world data challenges and demonstrate your mastery with a certificate upon completion.

Get **free access** to this Data Science Specialization from **Johns Hopkins University** and thousands of other **top-rated online courses** from platforms like **Udemy, Udacity, Coursera, MasterClass, NearPeer,** and more, all on Theetay. Start your data science journey today! This course is a great option for anyone looking to learn **machine learning, data analysis, R programming, statistical modeling, and data product development**.

Show More

What Will You Learn?

  • Performing regression analysis, least squares and inference using regression models
  • Construction and application of prediction functions
  • Development of public data products
  • Building models, performing inference and presenting interactive data products

Course Content

01. statistical-inference
new topic

  • 0005 002_welcome-to-statistical-inference_instructions.html
    00:00
  • A Message from the Professor
  • 0006 003_some-introductory-comments_courses.git
    00:00
  • 0008 004_pre-course-survey_instructions.html
    00:00
  • 0010 005_syllabus_JHSPH-StudentReferencing_handbook.pdf
    00:00
  • 0013 006_course-book-statistical-inference-for-data-science_instructions.html
    00:00
  • 0015 007_data-science-specialization-community-site_instructions.html
    00:00
  • 0016 008_homework-problems_hw1.html
    00:00
  • 0021 001_probability_instructions.html
    00:00
  • 0025 002_02-01-introduction-to-probability.mp4
    00:00
  • 0029 003_02-02-probability-mass-functions.mp4
    00:00
  • 0033 004_02-03-probability-density-functions.mp4
    00:00
  • 0034 001_conditional-probability_instructions.html
    00:00
  • 0038 002_03-01-conditional-probability.mp4
    00:00
  • 0042 003_03-02-bayes-rule.mp4
    00:00
  • 0046 004_03-03-independence.mp4
    00:00
  • 0047 001_expected-values_instructions.html
    00:00
  • 0051 002_04-01-expected-values.mp4
    00:00
  • 0055 003_04-02-expected-values-simple-examples.mp4
    00:00
  • 0059 004_04-03-expected-values-for-pdfs.mp4
    00:00
  • 0060 001_practical-r-exercises-in-swirl-1_instructions.html
    00:00
  • 0065 002_05-01-introduction-to-variability.mp4
    00:00
  • 0069 003_05-02-variance-simulation-examples.mp4
    00:00
  • 0073 004_05-03-standard-error-of-the-mean.mp4
    00:00
  • 0077 005_05-04-variance-data-example.mp4
    00:00
  • 0078 001_distributions_instructions.html
    00:00
  • 0082 002_06-01-binomial-distrubtion.mp4
    00:00
  • 0086 003_06-02-normal-distribution.mp4
    00:00
  • 0090 004_06-03-poisson.mp4
    00:00
  • 0091 001_asymptotics_instructions.html
    00:00
  • 0095 002_07-01-asymptotics-and-lln.mp4
    00:00
  • 0099 003_07-02-asymptotics-and-the-clt.mp4
    00:00
  • 0103 004_07-03-asymptotics-and-confidence-intervals.mp4
    00:00
  • 0104 001_practical-r-exercises-in-swirl-part-2_instructions.html
    00:00
  • 0109 002_08-01-t-confidence-intervals.mp4
    00:00
  • 0113 003_08-02-t-confidence-intervals-example.mp4
    00:00
  • 0117 004_08-03-independent-group-t-intervals.mp4
    00:00
  • 0121 005_08-04-a-note-on-unequal-variance.mp4
    00:00
  • 0122 001_hypothesis-testing_instructions.html
    00:00
  • 0126 002_09-01-hypothesis-testing.mp4
    00:00
  • 0130 003_09-02-example-of-choosing-a-rejection-region.mp4
    00:00
  • 0134 004_09-03-t-tests.mp4
    00:00
  • 0138 005_09-04-two-group-testing.mp4
    00:00
  • 0139 001_p-values_instructions.html
    00:00
  • 0143 002_10-01-pvalues.mp4
    00:00
  • 0147 003_10-02-pvalue-further-examples.mp4
    00:00
  • 0148 001_knitr_instructions.html
    00:00
  • 0151 002_just-enough-knitr-to-do-the-project.mp4
    00:00
  • 0152 001_practical-r-exercises-in-swirl-part-3_instructions.html
    00:00
  • 0157 002_11-01-power.mp4
    00:00
  • 0161 003_11-02-calculating-power.mp4
    00:00
  • 0165 004_11-03-notes-on-power.mp4
    00:00
  • 0169 005_11-04-t-test-power.mp4
    00:00
  • 0173 001_12-01-multiple-comparisons.mp4
    00:00
  • 0178 002_13-01-bootstrapping.mp4
    00:00
  • 0182 003_13-02-bootstrapping-example.mp4
    00:00
  • 0186 004_13-03-notes-on-the-bootstrap.mp4
    00:00
  • 0190 005_13-04-permutation-tests.mp4
    00:00
  • 0191 001_practical-r-exercises-in-swirl-part-4_instructions.html
    00:00
  • Section Quiz

02. regression-models
new topic

03. practical-machine-learning
new topic

04. data-products
new topic

05. data-science-project
new topic

Earn a certificate

Add this certificate to your resume to demonstrate your skills & increase your chances of getting noticed.

selected template

Student Ratings & Reviews

No Review Yet
No Review Yet

Want to receive push notifications for all major on-site activities?

×