Machine Learning Engineering for Production (MLOps) Specialization
About Course
Free Machine Learning Engineering for Production (MLOps) Specialization
This Specialization, offered by Coursera, provides a comprehensive understanding of machine learning engineering for production, covering concepts, tools, and methodologies for building and maintaining integrated systems that operate continuously.
Learn how to design, deploy, and continuously improve machine learning applications in production environments. This specialization is ideal for individuals who are looking to build an effective AI career. You will gain practical skills in:
- Designing end-to-end ML production systems
- Establishing model baselines and addressing concept drift
- Building data pipelines for gathering, cleaning, and validating datasets
- Implementing feature engineering, transformation, and selection with TensorFlow Extended
- Managing modeling resources and serving offline/online inference requests
- Addressing model fairness and explainability issues
- Delivering deployment pipelines for model serving
- Maintaining continuously operating production systems
This specialization is offered for free on Theetay. Explore other free online courses from platforms like Udemy, Udacity, Coursera, MasterClass, NearPeer, and more. Enroll today and take the first step towards a successful career in machine learning engineering.
Course Content
01. Introduction to Machine Learning in Production
-
A Message from the Professor
-
0003 01_specialization-overview.mp4
00:00 -
0009 02_steps-of-an-ml-project.mp4
00:00 -
0012 03_case-study-speech-recognition.mp4
00:00 -
0015 04_course-outline.mp4
00:00 -
0016 05_important-have-questions-issues-or-ideas-join-our-forum_instructions.html
00:00 -
0020 01_key-challenges.mp4
00:00 -
0023 02_deployment-patterns.mp4
00:00 -
0026 03_monitoring.mp4
00:00 -
0029 04_pipeline-monitoring.mp4
00:00 -
0033 05_week-1-optional-references_instructions.html
00:00 -
0039 01_modeling-overview.mp4
00:00 -
0042 02_key-challenges.mp4
00:00 -
0045 03_why-low-average-error-isn-t-good-enough.mp4
00:00 -
0048 04_establish-a-baseline.mp4
00:00 -
0051 05_tips-for-getting-started.mp4
00:00 -
0052 06_selecting-and-training-a-model_exam.html
00:00 -
0055 01_error-analysis-example.mp4
00:00 -
0058 02_prioritizing-what-to-work-on.mp4
00:00 -
0061 03_skewed-datasets.mp4
00:00 -
0064 04_performance-auditing.mp4
00:00 -
0067 01_data-centric-ai-development.mp4
00:00 -
0070 02_a-useful-picture-of-data-augmentation.mp4
00:00 -
0073 03_data-augmentation.mp4
00:00 -
0076 04_can-adding-data-hurt.mp4
00:00 -
0079 05_adding-features.mp4
00:00 -
0082 06_experiment-tracking.mp4
00:00 -
0085 07_from-big-data-to-good-data.mp4
00:00 -
0088 08_week-2-optional-references_instructions.html
00:00 -
0093 01_why-is-data-definition-hard.mp4
00:00 -
0096 02_more-label-ambiguity-examples.mp4
00:00 -
0099 03_major-types-of-data-problems.mp4
00:00 -
0102 04_small-data-and-label-consistency.mp4
00:00 -
0105 05_improving-label-consistency.mp4
00:00 -
0108 06_human-level-performance-hlp.mp4
00:00 -
0111 07_raising-hlp.mp4
00:00 -
0114 01_obtaining-data.mp4
00:00 -
0117 02_data-pipeline.mp4
00:00 -
0120 03_meta-data-data-provenance-and-lineage.mp4
00:00 -
0123 04_balanced-train-dev-test-splits.mp4
00:00 -
0124 05_important-reminder-about-end-of-access-to-lab-notebooks_instructions.html
00:00 -
0125 06_data-stage-of-the-ml-production-lifecycle_exam.html
00:00 -
0128 01_what-is-scoping.mp4
00:00 -
0131 02_scoping-process.mp4
00:00 -
0134 03_diligence-on-feasibility-and-value.mp4
00:00 -
0137 04_diligence-on-value.mp4
00:00 -
0140 05_milestones-and-resourcing.mp4
00:00 -
0142 06_week-3-optional-references_DLDL.html
00:00 -
0145 07_scoping-optional_quiz.html
00:00 -
0146 01_lecture-notes-week-3_instructions.html
00:00 -
Readme.txt
00:00 -
Section Quiz
02. Machine Learning Data Lifecycle in Production
03. Machine Learning Modeling Pipelines in Production
04. Deploying Machine Learning Models in Production
Earn a certificate
Add this certificate to your resume to demonstrate your skills & increase your chances of getting noticed.