Introduction to Machine Learning
About Course
Dive into the world of machine learning with this comprehensive course from Duke University. Learn the fundamentals of machine learning models like logistic regression, multilayer perceptrons, convolutional neural networks, natural language processing, and more. Discover how these models can solve real-world problems in fields such as medical diagnostics, image recognition, and text prediction.
This course provides hands-on experience implementing machine learning algorithms with PyTorch, a widely-used open-source library trusted by tech giants like Google, NVIDIA, CocaCola, eBay, Snapchat, Uber, and many others.
**This course is completely FREE and available on Theetay. It’s curated from top platforms like Udemy, Udacity, Coursera, MasterClass, NearPeer, and more.**
**Key topics covered:**
- Machine Learning Fundamentals
- Logistic Regression
- Multilayer Perceptrons
- Convolutional Neural Networks
- Natural Language Processing
- PyTorch Implementation
- Real-World Applications
**Start your machine learning journey today!**
Course Content
Introduction to Machine Learning
-
A Message from the Professor
-
001 01_course-information_instructions.html
00:00 -
005 02_why-machine-learning-is-exciting.mp4
00:00 -
009 03_what-is-machine-learning.mp4
00:00 -
010 04_intro-to-machine-learning_quiz.html
00:00 -
014 05_logistic-regression.mp4
00:00 -
018 06_interpretation-of-logistic-regression.mp4
00:00 -
019 07_math-for-data-science_instructions.html
00:00 -
023 08_motivation-for-multilayer-perceptron.mp4
00:00 -
024 09_logistic-regression_quiz.html
00:00 -
028 01_multilayer-perceptron-concepts.mp4
00:00 -
032 02_multilayer-perceptron-math-model.mp4
00:00 -
033 03_multilayer-perceptron_quiz.html
00:00 -
037 04_deep-learning.mp4
00:00 -
041 05_example-document-analysis.mp4
00:00 -
045 06_interpretation-of-multilayer-perceptron.mp4
00:00 -
049 07_transfer-learning.mp4
00:00 -
050 08_deep-learning_quiz.html
00:00 -
054 09_model-selection.mp4
00:00 -
055 10_model-selection_quiz.html
00:00 -
059 11_early-history-of-neural-networks.mp4
00:00 -
060 12_history-of-neural-networks_quiz.html
00:00 -
064 01_hierarchical-structure-of-images.mp4
00:00 -
068 02_convolution-filters.mp4
00:00 -
072 03_convolutional-neural-network.mp4
00:00 -
073 04_cnn-concepts_quiz.html
00:00 -
077 05_cnn-math-model.mp4
00:00 -
081 06_how-the-model-learns.mp4
00:00 -
085 07_advantages-of-hierarchical-features.mp4
00:00 -
086 08_cnn-math-model_quiz.html
00:00 -
090 01_cnn-on-real-images.mp4
00:00 -
094 02_applications-in-use-and-practice.mp4
00:00 -
098 03_deep-learning-and-transfer-learning.mp4
00:00 -
099 04_applications-in-use-and-practice_quiz.html
00:00 -
100 05_week-1-comprehensive_exam.html
00:00 -
103 01_introduction-to-pytorch.mp4
00:00 -
111 02_how-do-we-evaluate-our-networks.mp4
00:00 -
112 03_lesson-one_quiz.html
00:00 -
116 01_how-do-we-learn-our-network.mp4
00:00 -
120 02_how-do-we-handle-big-data.mp4
00:00 -
124 03_early-stopping.mp4
00:00 -
125 04_lesson-2_quiz.html
00:00 -
126 01_week-2-comprehensive_exam.html
00:00 -
129 02_model-learning-with-pytorch.mp4
00:00 -
133 01_motivation-diabetic-retinopathy.mp4
00:00 -
137 02_breakdown-of-the-convolution-1d-and-2d.mp4
00:00 -
138 03_lesson-one_quiz.html
00:00 -
142 01_core-components-of-the-convolutional-layer.mp4
00:00 -
146 02_activation-functions.mp4
00:00 -
150 03_pooling-and-fully-connected-layers.mp4
00:00 -
151 04_lesson-2_quiz.html
00:00 -
155 01_training-the-network.mp4
00:00 -
159 02_transfer-learning-and-fine-tuning.mp4
00:00 -
160 03_lesson-3_quiz.html
00:00 -
161 01_week-3-comprehensive_exam.html
00:00 -
164 02_cnn-with-pytorch.mp4
00:00 -
168 01_introduction-to-the-concept-of-word-vectors.mp4
00:00 -
172 02_words-to-vectors.mp4
00:00 -
175 03_example-of-word-embeddings.mp4
00:00 -
176 04_lesson-1_quiz.html
00:00 -
180 01_neural-model-of-text.mp4
00:00 -
183 02_the-softmax-function.mp4
00:00 -
186 03_methods-for-learning-model-parameters.mp4
00:00 -
189 04_more-details-on-how-to-learn-model-parameters.mp4
00:00 -
190 05_lesson-2_quiz.html
00:00 -
193 01_the-recurrent-neural-network.mp4
00:00 -
196 02_long-short-term-memory.mp4
00:00 -
199 03_long-short-term-memory-review.mp4
00:00 -
202 04_use-of-lstm-for-text-synthesis.mp4
00:00 -
203 05_lesson-3_quiz.html
00:00 -
206 01_simple-and-effective-alternative-methods-for-neural-nlp.mp4
00:00 -
207 02_week-4-comprehensive_exam.html
00:00 -
210 01_natural-language-processing-with-pytorch.mp4
00:00 -
216 02_relationships-between-word-vectors.mp4
00:00 -
219 03_inner-products-between-word-vectors.mp4
00:00 -
222 04_intuition-into-meaning-of-inner-products-of-word-vectors.mp4
00:00 -
225 01_introduction-of-attention-mechanism.mp4
00:00 -
228 02_queries-keys-and-values-of-attention-network.mp4
00:00 -
231 03_self-attention-and-positional-encodings.mp4
00:00 -
234 01_attention-based-sequence-encoder.mp4
00:00 -
237 02_coupling-the-sequence-encoder-and-decoder.mp4
00:00 -
240 03_cross-attention-in-the-sequence-to-sequence-model.mp4
00:00 -
243 01_multi-head-attention.mp4
00:00 -
246 02_the-complete-transformer-network.mp4
00:00 -
249 01_introduction-to-reinforcement-learning.mp4
00:00 -
252 02_reinforcement-learning-problem-setup.mp4
00:00 -
255 03_example-of-reinforcement-learning-in-practice.mp4
00:00 -
256 04_reinforcement-learning-quiz_quiz.html
00:00 -
259 05_reinforcement-learning-with-pytorch.mp4
00:00 -
262 01_moving-to-a-non-myopic-policy.mp4
00:00 -
265 02_q-learning.mp4
00:00 -
268 03_extensions-of-q-learning.mp4
00:00 -
269 04_q-learning-quiz_quiz.html
00:00 -
272 01_limitations-of-q-learning-and-introduction-to-deep-q-learning.mp4
00:00 -
275 02_deep-q-learning-based-on-images.mp4
00:00 -
278 03_connecting-deep-q-learning-with-conventional-q-learning.mp4
00:00 -
279 04_deep-q-learning-quiz_quiz.html
00:00 -
Section Quiz
Earn a certificate
Add this certificate to your resume to demonstrate your skills & increase your chances of getting noticed.