Introduction to Machine Learning

Wishlist Share
Share Course
Page Link
Share On Social Media

About Course

Dive into the world of machine learning with this comprehensive course from Duke University. Learn the fundamentals of machine learning models like logistic regression, multilayer perceptrons, convolutional neural networks, natural language processing, and more. Discover how these models can solve real-world problems in fields such as medical diagnostics, image recognition, and text prediction.

This course provides hands-on experience implementing machine learning algorithms with PyTorch, a widely-used open-source library trusted by tech giants like Google, NVIDIA, CocaCola, eBay, Snapchat, Uber, and many others.

**This course is completely FREE and available on Theetay. It’s curated from top platforms like Udemy, Udacity, Coursera, MasterClass, NearPeer, and more.**

**Key topics covered:**

  • Machine Learning Fundamentals
  • Logistic Regression
  • Multilayer Perceptrons
  • Convolutional Neural Networks
  • Natural Language Processing
  • PyTorch Implementation
  • Real-World Applications

**Start your machine learning journey today!**

Show More

What Will You Learn?

  • Convolutional Neural Network
  • Python Programming
  • Machine Learning
  • pytorch
  • Natural Language Processing

Course Content

Introduction to Machine Learning

  • A Message from the Professor
  • 001 01_course-information_instructions.html
    00:00
  • 005 02_why-machine-learning-is-exciting.mp4
    00:00
  • 009 03_what-is-machine-learning.mp4
    00:00
  • 010 04_intro-to-machine-learning_quiz.html
    00:00
  • 014 05_logistic-regression.mp4
    00:00
  • 018 06_interpretation-of-logistic-regression.mp4
    00:00
  • 019 07_math-for-data-science_instructions.html
    00:00
  • 023 08_motivation-for-multilayer-perceptron.mp4
    00:00
  • 024 09_logistic-regression_quiz.html
    00:00
  • 028 01_multilayer-perceptron-concepts.mp4
    00:00
  • 032 02_multilayer-perceptron-math-model.mp4
    00:00
  • 033 03_multilayer-perceptron_quiz.html
    00:00
  • 037 04_deep-learning.mp4
    00:00
  • 041 05_example-document-analysis.mp4
    00:00
  • 045 06_interpretation-of-multilayer-perceptron.mp4
    00:00
  • 049 07_transfer-learning.mp4
    00:00
  • 050 08_deep-learning_quiz.html
    00:00
  • 054 09_model-selection.mp4
    00:00
  • 055 10_model-selection_quiz.html
    00:00
  • 059 11_early-history-of-neural-networks.mp4
    00:00
  • 060 12_history-of-neural-networks_quiz.html
    00:00
  • 064 01_hierarchical-structure-of-images.mp4
    00:00
  • 068 02_convolution-filters.mp4
    00:00
  • 072 03_convolutional-neural-network.mp4
    00:00
  • 073 04_cnn-concepts_quiz.html
    00:00
  • 077 05_cnn-math-model.mp4
    00:00
  • 081 06_how-the-model-learns.mp4
    00:00
  • 085 07_advantages-of-hierarchical-features.mp4
    00:00
  • 086 08_cnn-math-model_quiz.html
    00:00
  • 090 01_cnn-on-real-images.mp4
    00:00
  • 094 02_applications-in-use-and-practice.mp4
    00:00
  • 098 03_deep-learning-and-transfer-learning.mp4
    00:00
  • 099 04_applications-in-use-and-practice_quiz.html
    00:00
  • 100 05_week-1-comprehensive_exam.html
    00:00
  • 103 01_introduction-to-pytorch.mp4
    00:00
  • 111 02_how-do-we-evaluate-our-networks.mp4
    00:00
  • 112 03_lesson-one_quiz.html
    00:00
  • 116 01_how-do-we-learn-our-network.mp4
    00:00
  • 120 02_how-do-we-handle-big-data.mp4
    00:00
  • 124 03_early-stopping.mp4
    00:00
  • 125 04_lesson-2_quiz.html
    00:00
  • 126 01_week-2-comprehensive_exam.html
    00:00
  • 129 02_model-learning-with-pytorch.mp4
    00:00
  • 133 01_motivation-diabetic-retinopathy.mp4
    00:00
  • 137 02_breakdown-of-the-convolution-1d-and-2d.mp4
    00:00
  • 138 03_lesson-one_quiz.html
    00:00
  • 142 01_core-components-of-the-convolutional-layer.mp4
    00:00
  • 146 02_activation-functions.mp4
    00:00
  • 150 03_pooling-and-fully-connected-layers.mp4
    00:00
  • 151 04_lesson-2_quiz.html
    00:00
  • 155 01_training-the-network.mp4
    00:00
  • 159 02_transfer-learning-and-fine-tuning.mp4
    00:00
  • 160 03_lesson-3_quiz.html
    00:00
  • 161 01_week-3-comprehensive_exam.html
    00:00
  • 164 02_cnn-with-pytorch.mp4
    00:00
  • 168 01_introduction-to-the-concept-of-word-vectors.mp4
    00:00
  • 172 02_words-to-vectors.mp4
    00:00
  • 175 03_example-of-word-embeddings.mp4
    00:00
  • 176 04_lesson-1_quiz.html
    00:00
  • 180 01_neural-model-of-text.mp4
    00:00
  • 183 02_the-softmax-function.mp4
    00:00
  • 186 03_methods-for-learning-model-parameters.mp4
    00:00
  • 189 04_more-details-on-how-to-learn-model-parameters.mp4
    00:00
  • 190 05_lesson-2_quiz.html
    00:00
  • 193 01_the-recurrent-neural-network.mp4
    00:00
  • 196 02_long-short-term-memory.mp4
    00:00
  • 199 03_long-short-term-memory-review.mp4
    00:00
  • 202 04_use-of-lstm-for-text-synthesis.mp4
    00:00
  • 203 05_lesson-3_quiz.html
    00:00
  • 206 01_simple-and-effective-alternative-methods-for-neural-nlp.mp4
    00:00
  • 207 02_week-4-comprehensive_exam.html
    00:00
  • 210 01_natural-language-processing-with-pytorch.mp4
    00:00
  • 216 02_relationships-between-word-vectors.mp4
    00:00
  • 219 03_inner-products-between-word-vectors.mp4
    00:00
  • 222 04_intuition-into-meaning-of-inner-products-of-word-vectors.mp4
    00:00
  • 225 01_introduction-of-attention-mechanism.mp4
    00:00
  • 228 02_queries-keys-and-values-of-attention-network.mp4
    00:00
  • 231 03_self-attention-and-positional-encodings.mp4
    00:00
  • 234 01_attention-based-sequence-encoder.mp4
    00:00
  • 237 02_coupling-the-sequence-encoder-and-decoder.mp4
    00:00
  • 240 03_cross-attention-in-the-sequence-to-sequence-model.mp4
    00:00
  • 243 01_multi-head-attention.mp4
    00:00
  • 246 02_the-complete-transformer-network.mp4
    00:00
  • 249 01_introduction-to-reinforcement-learning.mp4
    00:00
  • 252 02_reinforcement-learning-problem-setup.mp4
    00:00
  • 255 03_example-of-reinforcement-learning-in-practice.mp4
    00:00
  • 256 04_reinforcement-learning-quiz_quiz.html
    00:00
  • 259 05_reinforcement-learning-with-pytorch.mp4
    00:00
  • 262 01_moving-to-a-non-myopic-policy.mp4
    00:00
  • 265 02_q-learning.mp4
    00:00
  • 268 03_extensions-of-q-learning.mp4
    00:00
  • 269 04_q-learning-quiz_quiz.html
    00:00
  • 272 01_limitations-of-q-learning-and-introduction-to-deep-q-learning.mp4
    00:00
  • 275 02_deep-q-learning-based-on-images.mp4
    00:00
  • 278 03_connecting-deep-q-learning-with-conventional-q-learning.mp4
    00:00
  • 279 04_deep-q-learning-quiz_quiz.html
    00:00
  • Section Quiz

Earn a certificate

Add this certificate to your resume to demonstrate your skills & increase your chances of getting noticed.

selected template

Student Ratings & Reviews

No Review Yet
No Review Yet

Want to receive push notifications for all major on-site activities?

×