(Coursera) Neural Networks and Deep Learning

About Course
Deep Learning Specialization: Neural Networks and Deep Learning – Free Online Course
Embark on your deep learning journey with this comprehensive course, **completely free**, from the renowned Deep Learning Specialization program. This introductory course delves into the fundamental concepts of neural networks, the driving force behind the AI revolution.
Gain the knowledge and skills to:
- Grasp the technological trends fueling the rise of deep learning.
- Construct, train, and deploy fully connected deep neural networks.
- Implement efficient (vectorized) neural networks.
- Identify key parameters within a neural network’s architecture.
- Apply deep learning to your own projects and applications.
This course is part of the Deep Learning Specialization, a foundational program designed to provide a comprehensive understanding of deep learning. It’s an ideal starting point for those seeking to master machine learning, advance their technical careers, and lead in the world of AI.
This course is **completely free** and available on platforms like **Udemy, Udacity, Coursera, MasterClass, NearPeer,** and more. Take the first step toward your deep learning expertise today!
What Will You Learn?
- This course is part of the Deep Learning Specialization
- When you enroll in this course, you'll also be enrolled in this Specialization.
- Learn new concepts from industry experts
- Gain a foundational understanding of a subject or tool
- Develop job-relevant skills with hands-on projects
- Earn a shareable career certificate
Course Content
t 01-Module 01-Lesson 01_Welcome
-
A Message from the Professor
-
Welcome-jHA__A61nqc
01:43 -
Meet Your Instructors-QiflJFVOt18
00:44 -
Overview-RZ5iolr4RGs
01:35 -
What Projects Will You Build-JGpXenoW0dk
03:26 -
Meet the Careers Team-cuKecPpZ7PM
02:11 -
The Great Robot Race-saVZ_X9GfIM
53:16
t 01-Module 01-Lesson 03_Computer Vision Fundamentals
-
01 Introduction A01 Power Of Cameras-lCPWJEEzUeo
00:23 -
lane line intro-aIkAcXVxf2w
00:55 -
color selection-bNOWJ9wdmhk
00:44 -
region select-ngN9Cr-QfiI
00:18 -
Computer Vision-wxQhfSdxjKU
00:38 -
canny and gradient-LQM–KPJjD0
00:57 -
Canny Edge Detection-Av2GsgQWX8I
01:22 -
Hough Intro-JFwj5UtKmPY
01:00 -
Hough Quiz 5-upKjISd3aBk
00:09 -
sine Hough-XQf7FOhwOVk
01:13
t 01-Module 01-Lesson 04_Finding Lane Lines Project
-
01 Introduction A02 Building A Portfolio-q8ZysjEREiM
00:37 -
Outro to Project-LatP7XUPgIE
00:47
t 01-Module 02-Lesson 01_Career Services Available to You
-
Working at Mercedes-Benz-Z_hi4djW5aw
03:55 -
Working at NVIDIA-C6Rt9lxMqHs
04:05 -
Working at Uber ATG-V23NZzX0efY
05:28
t 01-Module 03-Lesson 01_Introduction to Neural Networks
-
03 Deep Learning A01 Neural Network Intuition-UKEIHK5IifI
00:57 -
Module Introduction-uyLRFMI4HkA
01:29 -
ND013 01 L Intro To Neural Networks-UIycORUrPww
01:11 -
DLND REG 01 Quiz Housing Prices V2-8CSBiVKu35Q
01:04 -
Solution Housing Prices-uhdTulw9-Nc
00:37 -
Classsification Example-Dh625piH7Z0
01:38 -
Classification Example-46PywnGa_cQ
01:03 -
Linear Boundaries-X-uMlsBi07k
02:43 -
09 Higher Dimensions-eBHunImDmWw
02:01 -
DL 06 Perceptron Definition Fix V2-hImSxZyRiOw
03:54 -
Why Neural Networks-zAkzOZntK6Y
00:46 -
AND And OR Perceptrons-45K5N0P9wJk
02:06 -
XOR Perceptron-TF83GfjYLdw
00:35 -
07 Perceptron Algorithm Trick-lif_qPmXvWA
02:59 -
DL 10 S Perceptron Algorithm-fATmrG2hQzI
00:12 -
Perceptron Algorithm–zhTROHtscQ
01:37 -
Perceptron Agorithm Pseudocode-p8Q3yu9YqYk
02:14 -
Non-Linear Regions-B8UrWnHh1Wc
01:00 -
Error Functions-YfUUunxWIJw
00:33 -
Error Functions-jfKShxGAbok
05:50 -
Discrete vs Continuous-rdP-RPDFkl0
00:18 -
Discrete vs. Continuous-Rm2KxFaPiJg
03:58 -
DL 18 Q Softmax V2-RC_A9Tu99y4
03:28 -
DL 18 S Softmax-n8S-v_LCTms
01:39 -
Quiz – Softmax-NNoezNnAMTY
00:16 -
One-Hot Encoding-AePvjhyvsBo
01:19 -
Maximum Likelihood 1-1yJx-QtlvNI
01:02 -
Maximum Likelihood 2-6nUUeQ9AeUA
03:08 -
Quiz – Cross 1–xxrisIvD0E
00:34 -
Quiz Cross Entropy-njq6bYrPqSU
01:33 -
Cross Entropy 1-iREoPUrpXvE
03:17 -
CrossEntropy V1-1BnhC6e0TFw
05:32 -
Formula For Cross 1-qvr_ego_d6w
00:21 -
DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees
03:11 -
DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc
01:08 -
Error Function-V5kkHldUlVU
03:45 -
Gradient Descent-rhVIF-nigrY
02:51 -
Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA
02:37 -
Continuous Perceptrons-07-JJ-aGEfM
00:54 -
Non-Linear Data-F7ZiE8PQiSc
00:20 -
Non-Linear Models-HWuBKCZsCo8
00:52 -
29 Neural Network Architecture 2-FWN3Sw5fFoM
02:09 -
Combinando modelos-Boy3zHVrWB4
03:47 -
Layers-pg99FkXYK0M
02:08 -
Multiclass Classification-uNTtvxwfox0
01:19 -
DL 41 Feedforward FIX V2-hVCuvMGOfyY
04:19 -
DL 42 Neural Network Error Function (1)-SC1wEW7TtKs
01:20 -
Multilayer perceptrons-Rs9petvTBLk
01:00 -
Backpropagation V2-1SmY3TZTyUk
05:12 -
Calculating The Gradient 1 -tVuZDbUrzzI
02:20 -
Chain Rule-YAhIBOnbt54
01:14 -
DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4
04:37 -
Conclusion-m8xslYUBXYo
00:15
t 01-Module 03-Lesson 02_MiniFlow
-
Introduction to MiniFlow-FxmB3Q308h0
00:26 -
Pixels are Features!-qE5YYXtPq9U
00:10
t 01-Module 03-Lesson 03_Introduction to TensorFlow
-
03 Deep Learning A05 Deep Learning Foundations-Fw6cM2mpfcs
00:27 -
Introduction To Deep Learning-7xRwuECaXBs
00:57 -
What Is Deep Learning-INt1nULYPak
00:53 -
Solving Problems – Big And Small-WHcRQMGSbqg
01:28 -
Let’S Get Started-ySIDqaXLhHw
00:48 -
Supervised Classification-XTGsutypAPE
00:47 -
Let’s make a deal-l1xMgirpwCU
00:36 -
Training Your Logistic Classifier-WQsdr1EJgz8
01:46 -
One-Hot Encoding-phYsxqlilUk
00:26 -
Cross Entropy-tRsSi_sqXjI
01:39 -
16 L Minimizing Cross-Entropy-YrDMXFhvh9E
01:54 -
17 L Transition Into Practical Aspects Of Learning-bKqkRFOOKoA
00:27 -
Numerical Stability-_SbGcOS-jcQ
00:29 -
Normalized Inputs And Initial Weights-WaHQ9-UXIIg
02:46 -
21 L Measuring Performance-byP0DJImOSk
03:33 -
Transition Overfitting – Dataset Size-Lmxem7ud9yk
00:33 -
21 Validation And Test Set V2-iC2QOiavbrw
00:41 -
Validation Set Size–2XvoG6WD9k
00:24 -
Validation Set Size-P4LwoQyJSMk
00:42 -
Validation Test Set Size Continued-cgoB-MJObmw
00:42 -
29 L Optimizing A Logistic Classifier-U_7nO1dm2tY
00:27 -
30 L Stochastic Gradient Descent-U9iEGUd9kJ0
02:25 -
31 L Momentum And Learning Rate Decay-O3QYdmQjXds
01:30 -
32 L Parameter Hyperspace!-5a3-iIhdguc
01:29
t 01-Module 03-Lesson 04_Deep Neural Networks
-
03 Deep Learning A07 Let’S Go Deeper-SzTpc_EWbDs
00:15 -
Intro To Deep Neural Networks-SXtXg_BB4lI
00:34 -
Number of Parameters-8cIlVoH5dhw
00:19 -
Number of Parameters-TkaTTptnYdA
00:23 -
Linear Models Are Limited-12AYOYDrpfQ
01:26 -
Rectified Linear Units-2-GirRl7TqU
00:25 -
Rectified Linear Units-z9crz_gwGCM
00:17 -
Network Of ReLUs-mJk1UvhDb1g
00:45 -
No Neurons-svA0HOjFFl0
00:27 -
ChainRule-DxOg_olir0k
00:23 -
10 Backprop-wSXcrBbY8oE
01:54 -
Training a Deep Learning Network-CsB7yUtMJyk
01:15 -
Regularization Intro-pECnr-5F3_Q
00:56 -
Regularization-QcJBhbuCl5g
00:59 -
Regularization-Quiz-E0eEW6V0_sA
00:24 -
Dropout-6DcImJS8uV8
01:43 -
Dropout Pt. 2-8nG8zzJMbZw
00:48
t 01-Module 03-Lesson 05_Convolutional Neural Networks
-
03 Deep Learning A06 CNNs Have Taken Over-yNOHThuy2UU
00:19 -
Intro to CNNs-B61jxZ4rkMs
00:11 -
Color-Question-BdQccpMwk80
00:30 -
Statistical Invariance-0Hr5YwUUhr0
01:32 -
Convolutional Networks-ISHGyvsT0QY
03:04 -
Feature-Map-Sizes-Question-lp1NrLZnCUM
00:27 -
Feature-Map-Sizes-Solution-W4xtf8LTz1c
00:45 -
Convolutions Cont.-utOv-BKI_vo
00:37 -
Explore the Design Space-FG7M9tWH2nQ
02:16 -
1×1 Convolutions-Zmzgerm6SjA
01:10 -
Inception Module-SlTm03bEOxA
01:06
t 01-Module 03-Lesson 06_LeNet for Traffic Signs
-
LeNet Architecture-FQYrzmnbsMs
01:02 -
LeNet Data-eCP8o1BnhRA
01:37 -
LeNet Implementation-EA3f6zTbbo0
03:00 -
LeNet Training Pipeline-yof-J8Xktlk
01:52 -
LeNet Evaluation Pipeline-cibEsIOTE60
00:53 -
LeNet Model Training-9580p7ZRQVY
01:04 -
LeNet Testing-NHoyQSZNWA4
00:36 -
LeNet on AWS-1shr08mozc0
03:08 -
LeNet for Traffic Signs-VfJvSF087SI
03:41
t 01-Module 03-Lesson 07_Traffic Sign Classifier Project
-
03 Deep Learning A03 Starting With Neural Networks-TgRhLmHRvfE
00:28 -
Intro to Traffic Sign Classifier-7pULs5sC_7A
00:36
t 01-Module 03-Lesson 08_Keras
-
03 Deep Learning A02 Deep Learning Breakthroughs-iYdQ7bKBxFE
00:43 -
Introduction–DZ5OI2uCzU
00:33 -
Deep Learning Frameworks-i2mmnu-t8-c
02:01 -
High Level Frameworks-ThmsQxazSvM
00:21 -
Conclusion-iLeQi96NRy0
00:31
t 01-Module 03-Lesson 09_Transfer Learning
-
Introduction-mMT_3k1LvNU
01:01 -
Bryan Catanzaro-CLIF_6QwlFo
01:16 -
L9 03 L GPUs-8eP2EpfBli0
01:30 -
Transfer Learning-pkCUxzJNtfI
00:53 -
Deep Learning History-AWWLT4QxKaM
01:19 -
Imagenet-pcNxBs7OAzA
01:12 -
Alexnet-X-QVsH27Mo4
00:58 -
Alexnet Today-AItZPkRHH_I
00:30 -
VGG-akFO1sH7Q_0
00:43 -
Empirics-VT8RENbE9Ck
01:28 -
GoogLeNet-sdT5f8n7IcI
02:16 -
ResNet-fDCgul26GGk
00:51 -
Outro-WOrM6qopj7A
00:34
t 01-Module 03-Lesson 10_Behavioral Cloning Project
-
03 Deep Learning A04 Simulation-K8ROKGMm-mc
00:44 -
Behavioral Cloning Project-YXs-IwG9ISg
01:15 -
01 – Running The Simulator-rKw8md-zVno
00:56 -
02 – Data Collection-kTJiHXJe_t4
01:01 -
03 – Data Visualization-_Gto6fQQWFI
02:06 -
04 – Training The Network-iYH4UvsPgOY
03:12 -
05 – Validating The Model-1UGOJGg-0dU
01:03 -
06 – Data Preprocessing-Oc7cLOS03PE
01:11 -
07 – LeNet Again-rVusn6F5i7s
00:45 -
09 – Data Augmentation-2oaB2_DhmF8
01:15 -
08 – Side Cameras-GumTdw9mjL0
01:45 -
10 – Image Cropping-SpPxyW-869U
00:47 -
11 – NVIDIA Architecture-6vVPHcgQkLg
00:51 -
12 – More Data Collection-cCZNlX3KLnY
00:16 -
13 – Generalizing Data Collection-SfHOdOHf4Zk
00:31
t 01-Module 04-Lesson 01_Camera Calibration
-
02 Computer Vision A01 The Challenges With Cameras-n2RSEjPn814
00:28 -
L21 Advanced Techniques For Lane Finding A02 L Welcome To Computer Vision-FRBWnuf1OIg
01:56 -
Overview-yN7u0qmJDhA
01:02 -
Getting Started, Camera Calibration-0zlyx5nL8Uo
01:06 -
Distortion-Bv3o0INBQIU
00:56 -
Pinhole Camera Model and Types of Distortion-FBHyHUN-A8c
02:50 -
Distortion-q3B71N6FrGw
00:56 -
Chessboards-lA-I22LtvD4
04:43 -
Lane Curvature-2UQ22uRybuU
01:07 -
Perspective Transform-JTesiOANhB0
02:48 -
Transforming a Stop Sign-OXILkkXXY8A
04:31
t 01-Module 04-Lesson 02_Gradients and Color Spaces
-
Gradient Threshold-2TlORF3RzH8
00:45 -
Color Spaces-mhILAhzgPRE
00:30 -
Color Spaces and Thresholding-dMI_so4P1Jc
03:10
t 01-Module 04-Lesson 03_Advanced Techniques for Lane Finding
-
Project Steps-0lyUMJdg-PY
00:43 -
Finding Lane Pixels by Histogram and Sliding Window-siAMDK8C_x8
00:25
t 01-Module 04-Lesson 04_Advanced Lane Finding Project
-
02 Computer Vision A02 Becoming An Expert–ZIJqfTk8mg
00:31 -
Onward!-oYHg46OYpsM
00:48
t 01-Module 04-Lesson 05_Machine Learning and Stanley
-
Intro to Classifiers-u7XLk1Q9Efw
00:43 -
ML in The Google Self-Driving Car-lL16AQItG1g
02:12 -
Stanley Terrain Classification-MMllI8f5O5E
00:33 -
Speed Scatterplot Grade and Bumpiness-IMWsjjIeOrY
01:27 -
Speed Scatterplot Grade and Bumpiness-v2UbL0SOm9A
00:04 -
Speed Scatterplot 2-ijy0n1EjY0M
00:08 -
Speed Scatterplot 2-T4GbEVybNlY
00:05 -
Speed Scatterplot 3-4qJwfAWG_wQ
00:34 -
Speed Scatterplot 3-PaE5caOJ5kg
00:06 -
From Scatterplots to Predictions-dGS0SKu1ox0
00:33 -
From Scatterplots to Predictions-SuGzxfoye9s
00:07 -
From Scatterplots to Predictions 2-tkllhaHoko8
00:09 -
From Scatterplots to Predictions 2-vG3ahYyLHlQ
00:10 -
From Scatterplots to Decision Surfaces-DLCq1-kOGX0
00:20 -
From Scatterplots to Decision Surfaces-gbkORDbJM50
00:32 -
A Good Linear Decision Surface-sudTOiG-NJo
00:16 -
A Good Linear Decision Surface-z-cX1kYbC1w
00:47 -
Transition to Using Naive Bayes-2_dJXh1qqe0
00:17 -
NB Decision Boundary in Python-pauohSxuCVs
00:37 -
Getting Started With sklearn-olGPVtH7KGU
01:25 -
Gaussian NB Example-wpnDwiqTCJA
03:02 -
GaussianNB Deployment on Terrain Data-TcSnd3_hAy8
00:12 -
GaussianNB Deployment on Terrain Data-VBs6D4ggnYY
00:56 -
Calculating NB Accuracy–gJJmckPBAg
01:23 -
Calculating NB Accuracy-m989etSymQQ
00:44 -
Training and Testing Data-x2dmBUEKQIA
01:12 -
Naive Bayes Strengths and Weaknesses-nfbKTrufPOs
01:29 -
Congrats on Learning Naive Bayes-nQsYfzO7-00
00:20
t 01-Module 04-Lesson 06_Support Vector Machines
-
Welcome to SVM-gnAmmyQ_ZcQ
00:23 -
Separating Line-mzKPXz-Yhwk
00:50 -
Separating Line-NTm_mA4akP4
00:06 -
Choosing Between Separating Lines-ppSLADGROp8
00:04 -
Choosing Between Separating Lines-swoZxkrxIB0
00:19 -
Maximizing the Margin-otAraUuSrJo
00:34 -
Practice with Margins-ICUYxC-8d7o
00:41 -
Practice with Margins-l3zXhTxQiTs
00:09 -
SVMs and Tricky Data Distributions-wbCq7wm81BU
00:17 -
SVMs and Tricky Data Distributions-yD9C03vqNeI
00:43 -
SVM Response to Outliers-TEAGqUkQVdM
00:28 -
SVM Response to Outliers-w-czJptEyBk
00:41 -
SVM Outlier Practice-osn2fVnCVgQ
00:37 -
SVM Outlier Practice-WxAO6ByCvew
00:20 -
Handoff to Katie-GkqOdgZnkig
00:10 -
SVM in SKlearn-R7xQtQzkvTk
01:44 -
Coding Up the SVM-2ieszOqnpWs
00:51 -
Coding Up the SVM-CvTXyvw7QLc
01:22 -
Nonlinear SVMs-6UgInp_gf1w
00:56 -
Nonlinear Data-EllzeBecnkU
00:31 -
Nonlinear Data-PxE2bbG2Hkw
00:18 -
A New Feature-8TqVHRan4Fo
00:05 -
A New Feature-8xFV-I4VqZ0
01:19 -
Visualizing the New Feature-sAdM20gFi2M
01:09 -
Separating with the New Feature–_jNi_5zEEQ
00:35 -
Separating with the New Feature-9KAHkienFWk
00:09 -
Practice Making a New Feature-MXXTeWLXliY
01:09 -
Practice Making a New Feature-ygveMIhCtDg
00:39 -
Kernel Trick-3Xw6FKYP7e4
01:39 -
Playing Around with Kernel Choices-krV6r7HxmZU
02:17 -
Playing Around with Kernel Choices-sy_jiSEy-Nw
00:36 -
Kernel and Gamma-pH51jLfGXe0
01:20 -
Kernel and Gamma-znlTyocTgSc
00:24 -
SVM C Parameter-joTa_FeMZ2s
01:49 -
SVM C Parameter-WVg5-vxQDm8
00:35 -
SVM Gamma Parameter-m2a2K4lprQw
01:59 -
Overfitting-CxAxRCv9WoA
01:06 -
Overfitting-plx_F2BkwNQ
00:28 -
SVM Strengths and Weaknesses-U9-ZsbaaGAs
00:56
t 01-Module 04-Lesson 07_Decision Trees
-
Welcome To Decision Trees-5eAHVk1-Hz0
00:24 -
Linearly Separable Data-lCWGV6ZuXt0
01:16 -
Linearly Separable Data-YNfxSsQT78Y
00:06 -
Multiple Linear Questions-p_xPoBRJdtE
00:59 -
Multiple Linear Questions-t1Y-nzgI1L4
00:47 -
Constructing a Decision Tree First Split-GMe5JT2_oUE
00:27 -
Constructing a Decision Tree First Split-iZYv1WdWwQo
00:38 -
Constructing a Decision Tree 2nd Split-CIxvkVy1UBI
00:16 -
Constructing a Decision Tree 2nd Split-U2yZxIeG2t0
00:16 -
Class Labels After Second Split–3VPMBIwTtE
00:12 -
Class Labels After Second Split-A7KKnDmZBA0
00:10 -
Constructing A Decision TreeThird Split-1GCPKAYDPTg
00:50 -
Constructing A Decision TreeThird Split-RxySNoOmXnc
00:08 -
Coding A Decision Tree-cxV6OAxCfIQ
01:27 -
Coding A Decision Tree-YaZu4waSryo
01:52 -
(object Object)-i7pRvuVoWg0
00:14 -
(object Object)-sCZI5gWS6mg
00:28 -
Decision Tree Parameters-Is5T4alCCGQ
00:34 -
Decision Tree Parameters-jkJ4dbbpVCQ
02:18 -
Min Samples Split-Mt5TWGYacJs
00:29 -
Min Samples Split-xU84TShi7I4
00:34 -
Decision Tree Accuracy-1z5mVNdF1KA
00:09 -
Decision Tree Accuracy-EOLzooGccPc
00:58 -
Data Impurity and Entropy-Bd15qhUrKCI
01:22 -
Minimizing Impurity in Splitting-L6J6BRFgDiI
00:35 -
Minimizing Impurity in Splitting-lfZg7j5W7u8
00:36 -
Formula of Entropy-NHAatuG0T3Q
00:52 -
Entropy Calculation Part 1-JX3NN5zwL08
00:02 -
Entropy Calculation Part 1-K-rQ8KnmmH8
00:48 -
Entropy Calculation Part 2-3tzTP3e0Cjw
00:03 -
Entropy Calculation Part 2-GtiLFC7EgFE
00:05 -
Entropy Calculation Part 3-M2Sp-Y2a71c
00:13 -
Entropy Calculation Part 3-WmnGwUCW-Yc
00:07 -
Entropy Calculation Part 4-bhwb2v9rEdI
00:08 -
Entropy Calculation Part 4-V0FNwMKhIVM
00:11 -
Entropy Calculation Part 5-B_fHrMIzIgE
01:33 -
Entropy Calculation Part 5-ZSkYbBsFuOQ
00:06 -
Information Gain-KYieR9y-ue4
00:44 -
Information Gain Calculation Part 1-daVA3PI2E6o
00:29 -
Information Gain Calculation Part 1-erdekkpG-Do
00:23 -
Information Gain Calculation Part 2-4YP0K-5c310
00:08 -
Information Gain Calculation Part 2-t4qaavAslSw
00:07 -
Information Gain Calculation Part 3-s_-I8mbrfw0
00:06 -
Information Gain Calculation Part 3-yWPbe8onCeA
00:07 -
Information Gain Calculation Part 4-i6aCKjMeZPk
00:05 -
Information Gain Calculation Part 4-j0uDMc3Yrlo
00:07 -
Information Gain Calculation Part 5-3jfQlMLyH2o
01:11 -
Information Gain Calculation Part 5-4oOXVejgFGk
00:07 -
Information Gain Calculation Part 6-qnfVoUChRlQ
00:46 -
Information Gain Calculation Part 6-zqmrW9N9WGw
00:23 -
Information Gain Calculation Part 7-EDFp4wU5BMo
00:14 -
Information Gain Calculation Part 7-frzL4n6Y-vU
00:03 -
Information Gain Calculation Part 8-c7UjSq7Fmr8
00:08 -
Information Gain Calculation Part 8-F-xSYJ3y_pA
00:04 -
Information Gain Calculation Part 9-PDqyWzZCVBY
00:05 -
Information Gain Calculation Part 9-V-jzhJoeZj8
00:15 -
Information Gain Calculation Part 10-o75xNa_jwvg
01:08 -
Information Gain Calculation Part 10-XYHTuv2FpWQ
00:16 -
Tuning Criterion Parameter-V80QLNK5fFQ
00:56 -
Bias-Variance Dilemma-W5uUYnSHDhM
01:09 -
DT Strengths and Weaknesses-KGnhg76iRfI
01:17
t 01-Module 04-Lesson 08_Object Detection
-
Intro to Vehicle Tracking-BAe-zslg088
00:57 -
Intro to Arpan and Drew-zfWvntpxbK0
01:41 -
Object Detection Overview-zNBWOHycI0I
00:43 -
Features-u3NOabeuMjA
00:29 -
Color Features-JT4fDW7lsG8
00:58 -
Color Histogram Features-8ZvNANafMU8
01:12 -
Color Spaces-Adunl74VJIY
02:05 -
Gradient Features-cvGtDBu8ONQ
01:09 -
HOG Features-DNweoAqjwNQ
02:33 -
Combining Features-5tQx6J-VzsI
01:33 -
Build a Classifier-YUCFFNC7tw4
00:29 -
Labeled Data-H_i1ctez_Qw
01:34 -
Train a Classifier-EBEN6KLQm8A
01:46 -
Sliding Windows-HMtd9EQooCk
00:39 -
Multi-scale Windows-uiPNkPggWLE
00:40 -
False Positives-rihCsPhUSPk
01:01 -
Tracking Pipeline-ioaSZFCn3iI
00:42 -
Summary of Vehicle Detection and Tracking-3ceKmVDQfFQ
01:09 -
Traditional vs. Deep Learning Approach-_IFdaC0lWhI
01:35
t 01-Module 04-Lesson 10_The End
-
CarND Term 1 Outro-5Apiqg20W8M
01:42
t 02-Module 01-Lesson 01_Welcome
-
Term 2 Intro-LD5VEaq1WdY
02:00
t 02-Module 02-Lesson 01_Introduction and Sensors
-
04 Sensor Fusion A01 The Benefits Of Sensors-zHe-uogin5U
01:19 -
Introduction-4E6RtK_Ml1I
02:56 -
Radar Strengths And Weaknesses-m7kpRg3bEI8
02:37 -
Lidar Strengths And Weaknesses-xpUduMU9-jo
01:25 -
Live Data Walkthrough-zXu6y0aNfjk
00:33 -
Wrap Up-Pe70LsgCa28
00:41
t 02-Module 02-Lesson 02_Kalman Filters
-
Kalman Filter Introduction-2zmbIjHpkRM
00:56 -
Tracking Intro-BkjQzEyJWrE
01:56 -
Gaussian Intro-6IhtnM1e0IY
02:00 -
Variance Comparison-rczAG7meAY4
00:53 -
Variance Comparison-TGdMG81hXc8
00:24 -
Preferred Gaussian–9AVZ-N_gbM
00:34 -
Preferred Gaussian-sBsju-6nQWI
00:11 -
Evaluate Gaussian-4-0nBfsD4jo
00:14 -
Evaluate Gaussian-mQtjczyAxQs
00:38 -
Maximize Gaussian-2cD8T65E-jM
00:16 -
Maximize Gaussian-fRYtUP0P4Lg
00:52 -
Shifting the Mean-8c479K2UCZo
01:38 -
Shifting the Mean-HmcurWkA0fQ
00:24 -
Predicting the Peak-PsyqM704q2Y
00:36 -
Predicting the Peak-zc_GQiISQ3E
00:40 -
Parameter Update-d8UrbKKlGxI
01:54 -
Parameter Update-Lwn6FJgyyYI
00:30 -
Parameter Update 2-_AAkw_fynwc
00:57 -
Parameter Update 2-2BfisMbu86o
00:28 -
Separated Gaussians-fGcozDEwnwY
00:08 -
Separated Gaussians-QAqsIWVVX0Y
00:28 -
Separated Gaussians 2-0FmTokjoRgo
00:22 -
Separated Gaussians 2-edcfMK_bKXw
00:59 -
New Mean and Variance-SwxRWZaC1FM
00:37 -
New Mean and Variance-yo8jf0U4hlc
01:00 -
Gaussian Motion-X7YggdDnLaw
02:43 -
Gaussian Motion-xNPEjY4dsds
00:09 -
Predict Function-AMFig-sYGfM
00:13 -
Predict Function-DV2cX9W0tT8
00:28 -
Kalman Filter Code-3xBycKfnCOQ
01:33 -
Kalman Filter Code-X7cixvcogl8
03:47 -
Kalman Prediction-doyrdLJ6rJ4
01:24 -
Kalman Prediction-tSfmiuB9s2c
01:01 -
Kalman Filter Land-LXJ5jrvDuEk
02:37 -
Kalman Filter Prediciton-HTL5-0DDqE4
01:32 -
Kalman Filter Prediciton-SK3cnmu8BYU
00:27 -
Another Prediction-cUKlYjQEQGY
00:13 -
Another Prediction-JNDsm_Gzxi0
00:14 -
More Kalman Filters-hUnTg5v4tDU
03:57 -
Kalman Filter Design-KYEr4BXhD_E
03:07 -
Kalman Matrices-ade97UKqSIc
05:44 -
Kalman Matrices-LEuzK9X7_hM
04:05 -
Conclusion-6kFMxhlfHuI
00:39
t 02-Module 02-Lesson 03_C++ Checkpoint
-
04 Sensor Fusion A02 High Performance Computing-rMGNMvjG5KA
00:52
t 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++
-
04 Sensor Fusion A04 Kalman Filters In C++-Hsvzm7zDG_A
00:21 -
Introduction And Overview-G57ZvTBAUL8
01:11 -
Lesson Map-_u8Vk58VqxY
02:04 -
Refresh Estimation Problem-Uwq7_6slV_M
03:08 -
ND013 M3 L4 05 L Kalman Filter Equations In C++-ZG8Ya-mCGhI
01:48 -
Kalman Filter Equations In C++ Programming-KV4ZdUnOz9I
02:50 -
Kalman Filter Equations In C++ Programming-smRjTGQG2SY
00:42 -
State Prediction-_A0NRvmgo3w
01:32 -
Process Covariance Matrix-iFcIiqRGaws
02:56 -
Laser Measurements-drbV05qKV8w
00:53 -
Programming Assignment-gTEQHV_1E2k
04:05 -
Programming Assignment Solution-udsB-13ntY8
02:11 -
Radar Measurements-LOz9AaHvB8M
03:27 -
Extended Kalman Filter-nMUd_esBMM8
02:48 -
Jacobian Matrix-FeE5cRlMZqU
02:06 -
Jacobian Matrix-pRhuwlMhG3o
00:29 -
EKF Algortihm Generalization-co0ZczAuwdM
00:57 -
Sensor Fusion General Processing Flow-dcTY4vRg5vo
01:16 -
Evaluating The Performance-1HieeV8IUv8
01:52 -
Evaluating The Performance-1iVBYQ_KWXk
00:32 -
Outro-k5VhLE0OoOM
00:43
t 02-Module 02-Lesson 05_Extended Kalman Filter Project
-
04 Sensor Fusion A03 Back To Bayes Theorem-wel0ggSIT54
00:23 -
Data collected from Castro St. in Mountain View, California.-FMNJPX_sszU
00:21 -
T2 P1 EKF-d6qbR3_LPoA
00:10
t 02-Module 02-Lesson 06_Unscented Kalman Filters
-
Intro-HbPxeJ3onmI
01:23 -
CTRV-g72HXEcSQHU
00:27 -
State Vector Introduction-hLVz0YOhntA
00:53 -
CTRV-o2HVZFSH1Fs
01:45 -
CTRV Integral Last 3-dcR9RtwJ6yk
01:06 -
CTRV Integral Position-9E6K4Aw_MaI
01:03 -
CTRV Zero Yaw Rate-8gAsx7OAH6c
00:52 -
CTRV Process Noise Effect Last 3-DUm8e7K8qZ8
00:45 -
CTRV Process Noise Vector-Qr99RXys-G0
01:09 -
13 Q CTRV Process Noise Position-DJ_K1udemNk
01:50 -
UKF Process Chain-sU7ifLgxxas
01:03 -
UKF What’s the Problem-OFb47Lu9JfM
03:38 -
UKF Basic Unscented Transformation-r594P0XjKa4
00:49 -
UKF Basics Unscented Transformation-8jbckHQDl4A
01:53 -
19 UKF Generate Sigma Points-t7YJJpEzTX4
04:13 -
Assignment Sigma Point Generation-TIc3n-cxTqc
02:04 -
22 L UKF Augmentation-G-kdutCM1RQ
04:00 -
Assignment Augmentation-5p-PqtxQeM8
00:46 -
Sigma Point Prediction-zeMy0dth3yI
01:17 -
Assignment Sigma Point Prediction-RQvnRpSPUak
01:07 -
26 L Predict Mean And Covar-6DELFN7Fz4c
01:42 -
Assignement Predicted Mean And Covariance-0vl_wfDpVec
00:26 -
Measurement Prediction-qDX8nL_OT60
03:24 -
Assignment Predict Radar Measurement-GYQeizoj09E
00:40 -
UKF Update-pJ5XauGNclI
01:39 -
Assignment UKF Update-f36o4sCEQvY
01:07 -
Parameters And Consistency-S4fX3X_9oik
06:19 -
What to Expect from the Project-WAt_g6HgYvs
03:48 -
UKF Story Time-gFdT8W1fmf8
01:12 -
Outro-G3soGuQeHGU
01:48
t 02-Module 02-Lesson 07_Unscented Kalman Filter Project
-
T2 P1 UKF-klDOvr29KfM
00:07
t 02-Module 03-Lesson 01_Introduction to Localization
-
L10 Localization Overview A01 Intro To AI-8p4C7jvfwvQ
03:14 -
Localization Introduction-lwmXQ-kxU3s
01:08 -
Localization Intuition-mVCSCU67D80
00:34 -
Localization Intuition Explanation-alIgWnGBUS8
00:48 -
Localizing a Self Driving Car-U-uDtVgezcE
02:55 -
Overview of the Lessons-KzvW0gkYOgo
00:27
t 02-Module 03-Lesson 02_Localization Overview
-
Introduction-Uqt_pRbR8rI
03:32 -
Localization-31xZhj2uPr4
02:10 -
Total Probability-n1EacrqyCs8
04:34 -
Uniform Probability Quiz-6tV5NY1HoNA
00:36 -
Uniform Probability Quiz-IZC33Tmy8Lo
00:09 -
Uniform Distribution-_sAkAALHyEg
00:05 -
Uniform Distribution-ysebYA6tDZ4
00:19 -
Generalized Uniform Distribution-e21oU80gwWc
00:22 -
Generalized Uniform Distribution-nsSvTTA0p8E
00:25 -
Probability After Sense-dEiQObhi2J4
00:14 -
Probability After Sense-UFcTLCttNRI
01:38 -
Compute Sum-qa9B4r5m8wM
00:23 -
Compute Sum-WgX17_mmc1c
00:03 -
Normalize Distribution-SW_wvez0izo
00:50 -
Normalize Distribution-Uc_rHR6U70U
00:21 -
pHit and pMiss-FnhHQht4vDo
00:16 -
pHit and pMiss-wOfAyDvun5w
00:19 -
Sum of Probabilities-6c0XvswnGm0
00:08 -
Sum of Probabilities-z0oijOqN8K8
00:09 -
Sense Function-eIjyrQpDogg
01:20 -
Sense Function-Y5iFxWRTw1c
00:46 -
Normalized Sense Function-GqWszyHTYas
00:13 -
Normalized Sense Function-UX3W8TUKbJ0
00:27 -
Test Sense Function-F8AHaaJVmkw
00:22 -
Test Sense Function-Lf2DYUCsUH4
00:51 -
Multiple Measurements–3qTapGGa-8
00:42 -
Multiple Measurements-gDO4sF8gR9k
00:26 -
Exact Motion-1mL6CtD3rAM
00:37 -
Exact Motion-Iky7rJXQU_4
00:25 -
Move Function-TnFq6hufsYs
01:04 -
Move Function-wfjE0mVADIk
00:57 -
Inexact Motion 1-C3f-T9_GTpw
01:40 -
Inexact Motion 1-mGWGhgZG_jM
00:12 -
Inexact Motion 2-gZbPZLFKS68
00:17 -
Inexact Motion 2-jR7FERpsqe4
01:03 -
Inexact Motion 3-7T1Rr7KLgdM
01:21 -
Inexact Motion 3-BldUOLB2U1Y
00:09 -
Inexact Move Function-68Kao9dkIKA
00:14 -
Inexact Move Function-QCnPJcNprEU
00:46 -
Limit Distribution Quiz-kfPWiMsnWFI
01:00 -
Limit Distribution Quiz-SXSafquSoW8
01:55 -
Move Twice-oqlgQa1IdcY
00:12 -
Move Twice-sKiumVTdpgY
00:14 -
Move 1000-nYt9b_pNvEE
00:12 -
Move 1000-x2o1g3J-1nw
00:06 -
Sense and Move-1s2dRczcu1A
01:08 -
Sense and Move-K8g3Hss8Q1A
01:48 -
Sense and Move 2–wT7h9Gdm_8
00:12 -
Sense and Move 2-rmWL_3r8MKo
01:56 -
Localization Summary-MVbo4OAgQCc
01:06 -
Formal Definition of Probability 1–F2gJXWbN6s
00:26 -
Formal Definition of Probability 1-OQ2JS2wQzrs
00:05 -
Formal Definition of Probability 2-PE-k3PGXeLY
00:06 -
Formal Definition of Probability 2-uw51WQDqXAI
00:03 -
Formal Definition of Probability 3-oDPbdGXH5nE
00:10 -
Formal Definition of Probability 3-TF6AWXSlOcY
00:12 -
Bayes’ Rule-sA5wv56qYc0
03:03 -
Cancer Test-OgC5M2XdIac
01:22 -
Cancer Test-SZ6Jg1wS604
01:13 -
Theorem of Total Probability-byZ-BzbQA5M
02:00 -
Coin Flip Quiz-ASUXN9Ay35M
00:58 -
Coin Flip Quiz-hzDsYZ61D5M
00:32 -
Two Coin Quiz-_AhoOd8YUK0
01:11 -
Two Coin Quiz-2PZHPjyYnMg
00:39
t 02-Module 03-Lesson 03_Markov Localization
-
05 Localization A02 A Return To Bayes Ruls-7FgzbyeJCp8
00:25 -
Markov Location Lesson Overview-rSj5lpzliQg
00:37 -
ND013 M4 L3 02 L Localization Posterior-WCva9DtGgGA
02:06 -
03 L Explain Localization Posterior V2-lGpIgbA5ZdA
03:08 -
Quiz How Much Data-wzcFHAf-9lo
00:36 -
03.5 S How Much Data-PQV6gWuyVOs
00:44 -
Derivation Outline-coHodx-I56U
00:57 -
Apply Bayes Rule With Additional Conditions-RsHS2o3zjcw
02:30 -
Explain Bayes Rule And Apply Law Of Total Probability-p2qfHa9G7_k
01:58 -
Explain Law Of Total Probability And Markov Assumption-9hGU7s5m8c0
01:59 -
Explain Markov Assumption For Motion Model-YFLAFptKU5E
05:02 -
Explain Recursive Structure-d0GrWJeVFjU
02:38 -
Implementation Details For Motion Model-O47bOcJm1eE
01:11 -
ND013 M4 L3 15.5 Q Noise In Motion Model-zRbT36RTlhs
00:42 -
Noise In Motion Model Solution-zJ9NWz7IlOM
00:34 -
Observation Model Intro-SDM1aVqRBCk
00:59 -
Markov Assumption For Observation Model-dyDjINdrIz0
03:27 -
Finalize The Bayes Localization Filter-teVw2J-_6ZE
01:35 -
Bayes Filter Theory Summary-lMyu2-PZGuk
01:11 -
Conclusion-3npZxfdrOpY
00:28
t 02-Module 03-Lesson 04_Motion Models
-
05 Localization A03 Motion In Autonomy-yiinXr2rV2M
00:34 -
Lesson Introduction–bPE6USDH3A
00:52 -
Motion Models-B2bXg8LaeF0
01:15 -
Yaw Rate Velocity-tS7BYlCo3nU
01:19 -
Odometry-IusJ3cTusp8
00:49 -
Odometry Errors Solution-FS_5mHoszx8
01:18 -
Lesson Outro-a_FvfH8OcPg
00:20
t 02-Module 03-Lesson 05_Particle Filters
-
Field Trip-2ocy_7PJtfA
02:02 -
State Space-G7nvigL0aDw
01:01 -
State Space-oyw7WEHMvVY
00:11 -
Belief Modality-5vdbYPc7tWw
00:23 -
Belief Modality-NhKyyhNl70A
00:22 -
Efficiency-7CNEY8lRrGE
00:34 -
Efficiency-rA8ZpMR6yXM
00:54 -
Exact or Approximate-1N3_RnTDFqU
00:35 -
Exact or Approximate-WKlm2aO2QGY
00:18 -
Particle Filters-4S-sx5_cmLU
03:46 -
Using Robot Class-1hgVZtRIjFU
02:00 -
Robot Class Details-ZFqEh8JylvI
00:42 -
Moving Robot-_37pf6lV15s
00:29 -
Moving Robot-SFcHsK2SWrI
01:07 -
Add Noise-ajOKsQLxoJI
00:36 -
Add Noise-FQEeI3qzaOM
00:19 -
Robot World-qq5h-Xw4DGg
00:37 -
Creating Particles-dH6uzx78lBA
01:30 -
Creating Particles-JNI9O9FjfDQ
00:49 -
Robot Particles–gNoDMlRwyc
00:53 -
Robot Particles–HQf6pkcebQ
00:42 -
Importance Weight-VJvBzdTPlAQ
00:58 -
Importance Weight-xP9PrSTJPz0
05:36 -
Resampling-FjRX_i3SsJA
00:35 -
Resampling-zlCJQmxvrkE
02:31 -
Never Sampled 1-8ffPkDiDioI
00:13 -
Never Sampled 1-MhhM1uh0-3w
00:11 -
Never Sampled 2-i457B5Iyg-8
00:12 -
Never Sampled 2-q95KMAIqDDY
00:15 -
Never Sampled 3-hcoKwWBvB6Y
01:22 -
Never Sampled 3-Z1oQl-1cUeE
00:18 -
New Particle-AROtzVxDDx4
00:58 -
New Particle-LJXbHoq5EZk
00:41 -
Resampling Wheel-aHLslaWO-AQ
03:22 -
Resampling Wheel-wNQVo6uOgYA
03:12 -
Orientation 1–lq0uzHd9T0
00:42 -
Orientation 1-cupiUHaKvdI
00:18 -
Orientation 2-17FoJwLiQkg
00:04 -
Orientation 2-Ex0su1DnIuw
01:00 -
Error-3kOrzhYCXz8
01:26 -
Error-UAdcKWLi9G8
01:47 -
You and Sebastian-gTMe0E6SM_M
00:48 -
Filters-bjZy-RVms_8
02:53 -
Filters-d_DXbkU7iPY
00:32 -
2012-QgOUu2sUDzg
01:58
t 02-Module 03-Lesson 06_Implementation of a Particle Filter
-
05 Localization A04 Particle Filters In C++-zL6dEu1jrH8
00:08 -
Lesson Introduction-_VjhAIChVcI
00:48 -
Pseudocode-JNm1fnWj5To
00:55 -
Initialization-agPdu0c5_GM
02:05 -
Prediction Step-kNthLZTHDIM
00:42 -
Data Association- Nearest Neighbor-nG_pFGT-fuo
01:59 -
Nearest Neighbor Advantages And Disadvantages-snXId_LyzXs
03:34 -
Update Step-1Uq2QZKz3aI
04:05 -
Calculating Error-HiRrJYZr-0I
01:30 -
ND013 M4 L6 Converting Landmark Observations-BrQfVd4JXpg
03:53 -
Explanation of Project Code-3VRp4chnPE4
05:19
t 02-Module 03-Lesson 07_Kidnapped Vehicle Project
-
05 Localization A01 Sparse Localization-DBZ7QdXPldc
00:29 -
T2 P3 PF-0SbVwwY_NuQ
00:49
t 02-Module 04-Lesson 01_PID Control
-
Intro-CelGYr2DgpI
00:48 -
PID Control – Artificial Intelligence for Robotics–8w0prceask
01:14 -
Proportional Control – Artificial Intelligence for Robotics-gGo-gSFqYqg
00:34 -
Implement P Controller – Artificial Intelligence for Robotics-OrJgrTc5d04
02:08 -
Implement P Controller Solution – Artificial Intelligence for Robotics-wvdFPAOCb64
00:25 -
Oscillations – Artificial Intelligence for Robotics-CO3zjkxBaIc
00:18 -
PD Controller – Artificial Intelligence for Robotics-kVYy2kjZjhA
02:34 -
PD Controller Solution – Artificial Intelligence for Robotics-YgomQgfFlTQ
00:27 -
Systematic Bias – Artificial Intelligence for Robotics-1wxFEcqq3_c
00:50 -
Is PD Enough – Artificial Intelligence for Robotics-gDbpwPdStlY
00:11 -
PID Implementation – Artificial Intelligence for Robotics-Ag8H3Iit9j4
01:43 -
PID Implementation Solution – Artificial Intelligence for Robotics-dgZnqCfyCoA
01:30 -
Twiddle – Artificial Intelligence for Robotics-2uQ2BSzDvXs
03:19 -
Parameter Optimization – Artificial Intelligence for Robotics-A2b3F5Ae53Y
02:10 -
Parameter Optimization Solution – Artificial Intelligence for Robotics-YQ5Pa-OKQm0
02:33 -
Outro-zF_MUxjCl04
00:16
t 02-Module 04-Lesson 02_PID Controller Project
-
07 Control A01 C++ On The Vehicle-LjlgqozwzzA
00:10
t 02-Module 04-Lesson 03_Vehicle Models
-
Vehicle Models Intro-qkT7Sr8HHBw
00:39 -
State-6vFczwAYjsU
00:27 -
04 L Building A Kinematic Model–Nnk8n81zr4
00:44 -
Following Trajectories-sOSHaAf_7b8
00:30 -
Errors-qtg_HiqoGHY
00:32 -
Dynamic Models – Part 1 Forces-KRN7GVJkFnU
00:32 -
Dynamic Models – Part 2 Slip Angle-oDusBbn820k
00:32 -
Dynamic Models – Part 3 Slip Ratio-kSqOJDwRFVc
00:21 -
Dynamic Models – Part 4 Tire Models-OFIL0yqsV7o
00:33 -
15 L Actuator Constraints-EwcDwdM1msg
00:51 -
Vehicle Models Outro-DqKw_m3Uxr0
00:33
t 02-Module 04-Lesson 04_Model Predictive Control
-
Model Predictive Control Intro-6z8A-1kNdz8
01:17 -
Dealing With Stopping-2gkRWj7KIMU
00:27 -
Additional Cost Constraints-lsdZtPPOhtk
00:35 -
Putting It All Together-CZ71uEy8EtI
00:53 -
Model Predictive Control Outro-iEdMInAsjgM
00:21
t 02-Module 04-Lesson 06_The End
-
CarND Term 2 Outro-dLOe-KiTEw8
02:20
t 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher
-
Trig Preface-DCX6mK9cre0
00:44 -
L3 01 V2-a_eHxfy5tnI
00:46 -
Nd113 C6 L3 04 L Moving At An Angle V2-2KDq_ZzN3Mk
00:59 -
Nd113 C6 L3 045 L Moving At An Angle Part2 V2-iI6zCp0RegM
00:52 -
Nd113 C6 L3 05 L Moving At 53 Degrees V2-VmoknN6xLKs
00:48 -
Nd113 C6 L3 055 L Moving At 53 Degrees Solution V2-Y_3M6eeYbd8
00:21 -
Power of Trigonometry-yLMTfBq_I3k
00:54 -
Nd113 C6 L3 08 L Opposite Adjacent Hypotenuse V2-hJ-7qj9iHWo
00:50 -
Nd113 C6 L3 09 L Trigonometric Ratios V2-wquwvrT9g_U
01:03 -
Nd113 C6 L3 095 L Trigonometric Ratios Solution V2-c5iuVhWCOzc
00:14 -
Trigonometry And Vehicle Motion-WY3T-9GHI_0
00:34 -
Solving Trig Problems Part1-qI4i845d7Qg
01:38 -
Conclusion-gMbDqd4ItiU
00:39
t 03-Module 01-Lesson 01_Welcome
-
CarND Term 3 Intro-v4pRPMIudM0
02:06
t 03-Module 02-Lesson 01_Search
-
06 Path Planning A01 Motion Planning-JlBs1RxKvHE
01:02 -
01 L Intro Group-f7lpxAQDxVI
01:15 -
Motion Planning-KHAu5A_flcQ
02:06 -
Compute Cost-7-yOaHVeATk
00:25 -
Compute Cost-dBA94pR6JYw
00:48 -
Compute Cost 2-n9_th4V4qE4
00:38 -
Compute Cost 2-OXIESpN0KaE
00:22 -
Optimal Path-Exl_kCyUc8U
00:47 -
Optimal Path-wLz-nF2CrHc
00:52 -
Optimal Path 2-GvCSZOR3hLQ
00:07 -
Optimal Path 2-qFswCrEUZSM
00:22 -
Maze-ge_-o0RfrgM
00:32 -
Maze-yVh0lVlerWs
00:16 -
Maze 2-aBUxPyEDOWw
00:10 -
Maze 2-YwAyqkznxa0
01:11 -
First Search Program – Artificial Intelligence for Robotics-TPIFP4E7DVo
06:55 -
First Search Program Solution – Artificial Intelligence for Robotics-cl8Kdkr4Gbg
05:04 -
Expansion Grid – Artificial Intelligence for Robotics-1l7bWfz8sJw
01:24 -
Expansion Grid Solution – Artificial Intelligence for Robotics-pH6sDfBalaw
00:43 -
Print Path-6UJFZf40aBg
01:41 -
Print Path-CyQ2gl-9W4o
03:00 -
A-lxCCtgHk5Vs
08:27 -
Implement A-SSyvcCZKlqo
03:54 -
Implement A-V0Ppaw5G2Pg
00:31 -
A in Action-qXZt-B7iUyw
03:33 -
Dynamic Programming-r2bPY2s9wII
03:14 -
Computing Value-ebFQqd7Uhek
00:13 -
Computing Value-Sn-ZUbZdOn8
02:28 -
Computing Value 2-t2aT92C2ruA
00:12 -
Computing Value 2-yTV3JPJk1kE
00:03 -
Value Program-FdT1g_Bzjm0
02:41 -
Value Program-RXpuBRA-cpo
01:21 -
Optimum Policy-7kllZxX-Nso
01:05 -
Optimum Policy-MMDcirk9QPM
01:00 -
Left Turn Policy-bQA2ELDNmmg
03:57 -
Left Turn Policy-rH5DKpwYQLY
03:25 -
Planning Conclusion-M7ZJ74RVHqo
02:08
t 03-Module 02-Lesson 02_Prediction
-
01 L Introduction And Overview-aHmVFZ6hMjc
04:52 -
04 L Model Vs Data Driven Approaches-ehfA_NC7Ka4
02:17 -
06 L Data Driven Example Trajectory Clustering-jbFeQ9P2V9A
03:06 -
07 L TrajectoryClustering2 – Online Prediction-UPiED4soM4w
02:34 -
08 L ThinkingAboutModelBasedApproaches-2JHmXN4AKNY
03:19 -
09 L ProcessModels-VcRDsKBn7tc
04:36 -
11 L MultimodalEstimationApproaches-u1Tmt0Qdlgk
02:55 -
13 L Overview Of Hybrid Approaches-yCRvxI5wJS0
01:19 -
14 L IntroToNaiveBayes-AkrC_WP1MWk
02:56 -
Mahni Prediction Outro-hRozwCcoocY
00:59
t 03-Module 02-Lesson 03_Behavior Planning
-
06 Path Planning A03 Where To–9ZrXlxPH4L4
00:31 -
01 L Lesson Outline-qyH-1BMCiUY
01:43 -
03 L The Behavior Problem-5t-oVAZagT8
02:22 -
04 L Finite State Machine-NERRPjU08NU
01:25 -
05 L Formalizing FSMs-sEZn3iZgOaI
01:40 -
07 L StatesForASelfDrivingCar-zoN0-IPe0I4
02:33 -
08 L StatesForASelfDrivingCarSolution-QXU6ptbxfyo
05:03 -
09 Q InputsToTransitionFunctions-8jStt2d_SYc
00:32 -
09 S InputsToTransitionFunctions-AjMSl8zR-P0
00:07 -
12 L CreateACostFunctionSpeedPenalty-wGRDT2wTnn8
02:32 -
14 L CostFunctionDesignWeightTweaking-NK6SP-r4dGs
05:57 -
16 L SchedulingComputeTime-N6AlIUczqRM
01:50 -
Toby Ben Outro-Hzk5-lezrJk
00:26
t 03-Module 02-Lesson 04_Trajectory Generation
-
06 Path Planning A04 From Behavior To Trajectory-7yo_HJ1_J9Q
00:34 -
01 L Lesson Overview-BU4oChjLv7A
00:51 -
02 L The Motion Planning Problem-daGIOru4Bi4
02:10 -
03 L Properties Of Motion Planning Algorithsm-lNpD43L0qvw
01:00 -
Types of Motion Planning Algorithms-6-K1aLTEvk8
03:32 -
A – Artificial Intelligence for Robotics-lxCCtgHk5Vs
08:27 -
06 L A- Reminder Solution-HtQjw7qr2-o
01:45 -
Hybrid A Introduction-NuurQejBk0o
02:58 -
09 L Hybrid A- Tradeoffs Solution-6yAdF5u2B04
00:58 -
10 L Hybrid A- In Practice-Mkz_WjyRzag
05:32 -
15 L EnvironmentClassification-4NOvHff7WFQ
01:09 -
16 L Frenet Reminder-u3TYp-hDojk
01:23 -
17 L The Need For T-4WsqXkB8zqQ
03:22 -
18 L S D And T-SD1iyzgFf8s
03:50 -
20 L Structures Trajectory Generation Overview-N2cwqKR63x8
00:49 -
21 L TrajectoriesWithBoundaryConditions-p73Jma9nW-Q
03:21 -
22 Jerk Minimizing Trajectories-pomDFkzy2bk
04:08 -
23 L DerivationOverview-TuVp_HhQq7A
02:00 -
25 L How Polynomial Trajectory Generation Works-5ZzYOqYZZ3I
01:11 -
27 L WhatShouldBeCheckedSolution-E2TBXjyYb_Y
00:48 -
29 L Implementing Feasibility-8tD8Os9_gKc
02:09 -
31 L PuttingItAllTogether-UhrmXmnKhQE
04:23 -
35 L Conclusion-R56iixkZvEE
00:44
t 03-Module 02-Lesson 05_Path Planning Project
-
06 Path Planning A02 Planning Is Hard-15yIDPNbmWc
00:23 -
Path Planning Project Walkthrough and QA-7sI3VHFPP0w
82:58
t 03-Module 03-Lesson 02_Fully Convolutional Networks
-
Intro-1sm1EbfilXI
00:40 -
Why Fully Convolutional Networks (FCNs) -WQ_YOz1o9GM
01:36 -
Fully Convolutional Networks-_Lh2ozg5yTs
01:01 -
Fully Connected to 1×1 Convolution-xbPtOhkJW1A
00:53 -
Transposed Convolutions-K6mlLX8ZZDs
00:35 -
Skip Connections-JUYLA5PWzo0
01:01 -
FCNs In The Wild-q9wTd53-hsw
01:06 -
Outro-ESIl11NfQ7Q
00:19
t 03-Module 03-Lesson 03_Scene Understanding
-
Intro-z036GNuoiBk
00:22 -
Bounding Boxes-uPv4d0Xl8hc
00:52 -
Semantic Segmentation-_L5gJnZrw48
00:35 -
Scene Understanding-aMQREc-mP50
00:34 -
IoU—9BTjOsO6U
01:29 -
Outro-vyNI5hdMigs
00:29
t 03-Module 03-Lesson 04_Inference Performance
-
Intro-dK5Yn3sq5RM
00:24 -
Why Bother With Performance-pCg0q8qmgsk
00:38 -
L3 03 L Semantic Segmentation Revisited-xFcI26kLtiY
00:35 -
P1-Y2ggt6l7PTo
00:57 -
P2-Yr_rRyEOTnM
01:05 -
P3-yncq5HhDTV4
01:58 -
Fusion-JOksFH3vQgk
01:39 -
Reducing Precision-bZPG5I_igR8
01:41 -
Quantization Conversion-0kbFQerI86k
00:37 -
Outro-jMSB5_P_fss
00:21
t 03-Module 03-Lesson 05_Semantic Segmentation Project
-
Introduction-qA6Za_Pt5d0
00:35 -
ADL Project Walkthrough V2-5g9sZIwGubk
32:42
t 03-Module 04-Lesson 02_Introduction to Functional Safety
-
L1 01 L Introduction To Module-cHadgZtuDZA
01:40 -
L1 02 L Introduction To Lesson-jinuK2-qPh4
01:08 -
What Is Safety-o1mdbufGaq8
01:18 -
What Is Functional Safety-NeUXHSv5qz8
01:19 -
Introduction To Identify Hazards-ZzgEw7WQgTs
01:17 -
L1 Sebastian-lw3O5Me6FRw
02:20 -
Introduction To Evaluating Risks-3N-6YK_pPzA
02:26 -
L1 17 Reducing Risk With System Engineering-tFxkJKcujhQ
03:26 -
L1 19 Introduction To Iso26262-bjvpmBOG60Q
02:01 -
Lesson Summary-c_PnlhHye3w
00:43 -
Sebastian Discusses Risk-nuDIfITdhSc
00:53
t 03-Module 04-Lesson 03_Functional Safety Safety Plan
-
L2 01 L Introduction- Safety Plan-nQD8NgwXuj4
00:40 -
L2 03 L Safety Culture-hca5xarxPVM
01:09 -
L2 05 L Tailoring The Safety Lifecycle-Ym9raP5zb2U
01:48 -
L2 06 L Safety Management Roles And Responsibilities-5fViXy7XF0w
01:09 -
L2 08 L Development Interface Agreement-xF79RP2LduY
01:38 -
L2 10 L Confirmation Measures-3XiALMje_5Q
00:43 -
L2 12 L Outro-NNp7X8thmX8
00:44
t 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment
-
L3 01 Introduction- Item Definition And HARA-6rojuFZJ4Os
00:57 -
L3 04 L Introduction To HARA-Qxui0XShsbE
01:28 -
L3 Sebastian-sGbjIAiDEUs
01:06 -
05 HARA Situational Analysis-o9iBiz7IQ_k
02:29 -
L3 09 L HARA Identification Of Hazards-LXp7ScZaKp4
01:48 -
L3 14 HARA Risk Assessment, Severity, Exposure, Controllability-44NYK53gOAM
01:50 -
L3 14 Hara Risk Part 2–3EXJjR6fbk
00:53 -
L3 14 L Hara Risk Part 3-buFLRLfwSWw
00:59 -
L3 18 L HARA ASIL Levels-l7vx-w06fZw
01:54 -
L3 20 L HARA Safety Goals-lMT1EB5cZR8
00:50 -
L3 25 L HARA Outro-T0Xxu-Xh4J0
00:53
t 03-Module 04-Lesson 05_Functional Safety Functional Safety Concept
-
L4 01 L Introduction-srUVh4mBvws
00:35 -
L4 03 Functional Safety Requirements-9z5YqMYH7mY
01:17 -
L4 06 Allocation Of Requirements To Architecture-cDkQLZ3PJqM
02:18 -
Architecture Refinement-SK85D4cvwXo
01:11 -
L4 10 Function Safety Requirements And ASIL Inheritance-oeKSXaP7Lxg
01:36 -
L4 13 ASIL Decomposition-dphScT1QTNY
02:26 -
L4 15 Fault Tolerant Time Interval-o4PzRfVN_to
02:00 -
L4 18 Warning And Degradation Concept-khNhy3IwKa0
01:24 -
L4 Sebastian-0L2DG60xWy8
01:32 -
Summary Functional Safety Concept-NVCU1mOxnAo
00:39
t 03-Module 04-Lesson 06_Functional Safety Technical Safety Concept
-
L5 01 L Introduction-wBKlo2Lk_A0
00:36 -
L5 03 Deriving Techincal Safety Requirements From Functional Safety Requirements-fVLsG83a-So
01:30 -
L5 07 Other Types Of Techincal Safety Requirements-9xIlkXobXS0
03:24 -
L5 09 Technical Safety Requirement Attributes-EOYTl2e8wEs
01:54 -
L5 12 Allocation Of Requirements To System Acrchitecture Elements-dA2up9vZCcM
02:29 -
L5 Sebastian-30Ei-TLjYsk
01:13 -
L5 14 L Outro-sIe4SZfDUmM
00:31
t 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels
-
L6 01 L Intro-urgjYwIY3hs
00:38 -
L6 04 Hardware Failure Metrics-wlCVuAJj1xk
00:55 -
L6 06 Programming Languages-KpAhkXNan7Y
01:12 -
What Is MATLAB SelfDriving-6J3Ho1ZrHm0
01:39 -
L6 09 Software Safety Requirments Architecture Testing And Intergration-OJMGRtJciNI
01:39 -
L6 11-12 Software Safety Robustness And Quality-RQEnvtti3sM
02:05 -
L6 13 Freedom From Interference Spatial-HraIGQSxsQ0
01:29 -
L6 15 Freedom From Interference Temporal-ChGZCPXko7M
01:43 -
L6 17 Freedom From Interference Temporal Part 2-wRbGk0SwWNQ
01:28 -
L6 Sebastian-AD47B4rAKyY
02:10 -
L6 18 Freedom From Interference Communication-J2T842SLPgs
01:21 -
L6 20 System Architecture Safety Design Patterns-9q8WAW-g8jE
01:23 -
L6 22 L Lesson Outro-zSyoNGrZZ0k
00:47 -
L6 24 L Module Outro-QT-4yIV9dEM
00:26
t 03-Module 04-Lesson 08_Elective Project Functional Safety
-
L6 25 L Project Outro-k3tl3pkGBa8
00:26 -
Functional Safety Walkthrough-SsXNj_pfnao
42:00
t 03-Module 05-Lesson 01_Autonomous Vehicle Architecture
-
08 System Integration A01 Putting Everything Together-gxGk4undFEM
00:58 -
L1 01 L Lesson Introduction–5dEvxYljG8
01:37 -
L1 04 L Perception Subsystem-zo_JO5Sytuc
01:01 -
L1 07 L Components Inputs Wrapup-f3qloIYf16k
00:26 -
L1 08 L Planning Subsystem-MxG9DtKiSqM
00:33 -
L1 12 L Planning Subsystem Connections-5c752eVAR3I
00:19 -
L1 13 L Control Subsystem-ESIz-aSjklY
00:37 -
L1 15 L On To The Code-_jhipYTqp3U
00:10
t 03-Module 05-Lesson 02_Introduction to ROS
-
08 System Integration A03 Communication Between Systems-a9hYIvymlkQ
00:25 -
L2 01 L ROS And Carla–G-kEnQWKgY
00:41 -
Welcome to ROS Essentials-rvebtwi46SI
00:44 -
Build Robots with ROS-7eaz0qW7y_I
02:05 -
Brief History of ROS-Cw-FEyqU2NI
00:51 -
Nodes And Topics-t5xWx5Zgmk0
02:35 -
Message Passing-IpNp13F-TgQ
01:18 -
ROS Services-EXYmvpcOnCc
01:27 -
Compute Graph-dWc4ktFohNg
01:10 -
Turtlesim Overview-GcAqAdMQXvM
01:10 -
Sourcing The ROS Environment-6cHlu-KVi98
01:24 -
Run Turtlesim-hCkE973oY9o
02:21 -
Turtlesim Comms List Active Nodes-J_5JTUi7sQQ
01:00 -
Turtlesim Comms Topics-46YAnfvhTMc
00:53 -
Turtlesim Comms Get Info-Y6rMQreuOL4
00:55 -
Turtlesim Comms Message Information-f89-UgEb8Y0
02:46 -
Turtlesim Comms Echo Messages-HNA7eKhYcyA
02:24 -
Recap-7WOQ89HYhxA
00:50
t 03-Module 05-Lesson 03_Packages Catkin Workspaces
-
08 System Integration A04 ROS At Stanford-YxbwPjGylI8
00:28 -
Overview of Catkin Workspaces and Packages-VqYNipeW72o
00:58 -
Adding a Package-UJlCdokCJJ0
01:10 -
Roslaunch-EsGNppn8UlQ
02:35 -
Rosdep-Kei6k78fydE
02:09 -
ROS L2 Recap-OIZsHXuHWuI
00:36
t 03-Module 05-Lesson 04_Writing ROS Nodes
-
08 System Integration A05 Closing In-mFoFGT9AtfQ
00:17 -
ROS L3 Overview-LPbq_YwrzME
01:05 -
L3 Simple Mover Code-jEO_4xxA_mI
03:38 -
Simple Arm-Ki5LkE_xir4
00:17 -
L3 Arm Mover The Code-0Li845bwxyM
04:06 -
Look Away The Code -pOZW8SdyYsk
03:14 -
Recap-7G5xOFeSrh0
00:52 -
L4 01 L Outro-LwI4UmDGLeM
00:27
t 03-Module 05-Lesson 05_System Integration Project
-
08 System Integration A02 Have Fun!-Wx3tVLt74b8
00:59 -
L5 01 L Project Introduction-UT34zkxfS_M
01:50 -
Traffic Lights 2-PzIRniXv0z0
02:13 -
SDC Capstone Portfolio Part 1 V1 V2-6GIFyUzhaQo
14:30 -
SDC Capstone Portfolio Part 2 V2-kdfXo6atphY
12:20 -
SDC Capstone Portfolio Part 3 V1 V1-oTfArPhstQU
10:39 -
SDC Capstone Portfolio Part 4 V1-2tDrj8KjIL4
09:59
t 03-Module 06-Lesson 01_Completing the Program
-
CarND Final Video-V2-hDsYM2Zd0jg
02:41
t 04-Module 01-Lesson 01_Conduct a Job Search
-
Introduction-axcFtHK6If4
01:22 -
Job Search Mindset-cBk7bno3KS0
01:27 -
Target Your Application to An Employer-X9JBzbrkcvs
03:00 -
Open Yourself Up to Opportunity-1OamTNkk1xM
00:24
t 04-Module 02-Lesson 01_Refine Your Entry-Level Resume
-
Convey Your Skills Concisely-xnQr3ohml9s
01:22 -
Effective Resume Components-AiFcaHRGdEA
01:35 -
Resume Structure-POM0MqLTj98
02:12 -
Describe Your Work Experiences-B1LED4txinI
01:08 -
Resume Reflection-8Cj_tCp8mls
01:23 -
Resume Review-L3F2BFGYMtI
01:46
t 04-Module 03-Lesson 01_Craft Your Cover Letter
-
Get an Interview with a Cover Letter!-BH1KY63YfAM
01:39 -
Purpose-7F7cMCTcyhM
01:09 -
Cover Letter Components-DVvLiKedRw4
00:54 -
Writing Your Introduction-5S5PH73WLLY
01:33 -
Writing the Body-aK9Qnv3a6Wg
02:07 -
Write the Conclusion-i3ozyhGPmIg
00:27 -
Format-Xlqoq-SoJso
01:10
t 05-Module 01-Lesson 01_Develop Your Personal Brand
-
Why Network-exjEm9Paszk
02:00 -
Elevator Pitch-S-nAHPrkQrQ
02:04 -
Meet Chris-0ccflD9x5WU
03:00 -
Elevator Pitch-0QtgTG49E9I
01:08 -
Pitching to a Recruiter-LxAdWaA-qTQ
00:50 -
Use Your Elevator Pitch-e-v60ieggSs
01:40
t 05-Module 02-Lesson 01_GitHub Profile Review
-
Introduction-Vnj2VNQROtI
00:54 -
GitHub profile important items-prvPVTjVkwQ
01:35 -
Good GitHub repository-qBi8Q1EJdfQ
01:10 -
Interview with Art – Part 1-ClLYamtaO-Q
02:11 -
Identify fixes for example “bad” profile-AF07y1oAim0
00:12 -
Identify fixes for example “bad” profile-ncFtwW5urHk
00:51 -
Quick Fixes-Lb9e2KemR6I
01:11 -
Quick Fixes #2-It6AEuSDQw0
00:13 -
Writing READMEs with Walter-DQEfT2Zq5_o
00:40 -
Interview with Art – Part 2-Vvzl2J5K7-Y
01:19 -
Reflect on your commit messages-_0AHmKkfjTo
00:16 -
Participating in open source projects-OxL-gMTizUA
00:15 -
Interview with Art – Part 3-M6PKr3S1rPg
02:30 -
Participating in open source projects 2-elZCLxVvJrY
00:54 -
Starring interesting repositories-U3FUxkm1MxI
00:13 -
Starring interesting repositories-ZwMY5rAAd7Q
00:19 -
Outro-dps7Ti6Lado
00:26
t 06-Module 01-Lesson 01_Introduction and Efficiency
-
Course Introduction-NKBUbUiedzc
02:08 -
Syntax-08M93RaBSgU
00:27 -
Efficiency-I-RASDPbDrI
02:27 -
Notation Intro-xHwIU4j3gBc
02:48 -
Notation Continued-ZeGnkrKZWBQ
02:02 -
Worst Case and Approximation-ZYcmui02J40
03:03
t 06-Module 01-Lesson 02_List-Based Collections
-
Welcome to Collections-cZORvZq-tI0
01:10 -
Lists-KUQSgUMtyv0
01:09 -
Arrays-OnPP5xDmFv0
02:41 -
Linked Lists-zxkpZrozDUk
01:23 -
Linked Lists in Depth-ZONGA5wmREI
02:39 -
Stacks-DQoCO8aGcNc
00:46 -
Stacks Details-HpaVHzDeZC4
01:28 -
Queues-XAbzlilAHZw
02:06
t 06-Module 01-Lesson 03_Searching and Sorting
-
Binary Search-0VN5iwEyq4c
01:28 -
Efficiency of Binary Search-7WbRB7dSyvc
08:44 -
Recursion-_aI2Jch6Epk
06:51 -
Intro to Sorting-Z6yuIen71zM
01:57 -
Bubble Sort-h_osLG3GmjE
02:32 -
Efficiency of Bubble Sort-KddkHygi7is
02:25 -
Merge Sort-K916wfSzKxE
04:16 -
Efficiency of Merge Sort-HKiK5Y-YSkk
04:58 -
Quick Sort-kUon6854joI
03:22 -
Efficiency of Quick Sort-aMb5GHPGQ1U
02:52
t 06-Module 01-Lesson 04_Maps and Hashing
-
Introduction to Maps-JEw3iQAnGKQ
00:48 -
Sets and Maps-gmIb-qZhTDQ
01:31 -
Introduction to Hashing-8yik3RlDFgM
01:20 -
Hashing-kCPFfHx_LgQ
02:21 -
Collisions-BUaWIjZ_ToY
02:49 -
Hash Maps-A-ahUVi8pYQ
01:02 -
String Keys-WyFwieF1NN4
02:15
t 06-Module 01-Lesson 05_Trees
-
Trees-PXie7f22v2Q
00:39 -
Tree Basics-oaxLPzaXRDc
01:27 -
Tree Terminology-mPUsDUR_sj8
01:42 -
Tree Traversal-KZOdmzypynw
01:48 -
Depth-First Traversals-wp5ohHFTieM
02:35 -
Search and Delete-KbL-HK3ztX8
01:26 -
Insert-j6PkPa2ZHWg
02:10 -
Binary Search Trees-7-ZQrugO-Yc
00:39 -
BSTs-abRNGLhGUmE
01:51 -
BST Complications-pcB0wV7myy4
00:54 -
Heaps-M3B0UJWS_ag
02:14 -
Heapify-CAbDbiCfERY
01:18 -
Heap Implementation-2LAdml6_pDY
01:37 -
Self-Balancing Trees-EHI548K3jiw
01:44 -
Red-Black Trees – Insertion-dIuWLtWnkgs
01:49 -
Tree Rotations-O5Yl-m0YbVA
01:49
t 06-Module 01-Lesson 06_Graphs
-
Graph Introduction-DFR8F2Q9lgo
00:46 -
What Is a Graph-p-_DFOyEMV8
02:40 -
Directions and Cycles-lF0vUktQDPo
01:58 -
Connectivity-4x6u2KtNDg4
01:19 -
Graph Representations-uw9u6dtl0WA
01:56 -
Adjacency Matrices-FsFhoTALA1c
01:47 -
Graph Traversal-Dkt-XxHZaZE
00:45 -
DFS-BC8jEidd2EQ
02:23 -
BFS-pol4kGNlvJA
01:36 -
Eulerian Path-zS34kHSo7fs
02:31
t 06-Module 01-Lesson 07_Case Studies in Algorithms
-
Case Study Introduction-r8uEDyBylHY
00:37 -
Shortest Path Problem-huKUM97Vve8
00:59 -
Dijkstra’s Algorithm-SoPMK03cOgk
02:30 -
Knapsack Problem–xRKazHGtjU
02:04 -
A Faster Algorithm-J7S3CHFBZJA
02:46 -
Dynamic Programming-VQeFcG9pjJU
02:34 -
Traveling Salesman Problem-9ruR5Ux63QU
00:41 -
Exact and Approximate Algorithms-3A8YqOYlAwQ
02:58
t 06-Module 01-Lesson 08_Technical Interviewing Techniques
-
Interview Introduction-dRsHYt1Lddc
01:16 -
Clarifying the Question-XvvKBmKC_84
01:37 -
Confirming Inputs-8lPTOG1yLsg
00:47 -
Test Cases-7CNatJ7PqZ4
00:53 -
Brainstorming-LJFYhMDCCsU
03:05 -
Runtime Analysis-8bI9OgOB2qI
00:40 -
Coding-zhQYREUI8Z0
10:14 -
Debugging-Bz1tlvkql9Q
03:06 -
Interview Wrap-Up-sz4Ekcu9a_Q
00:42
Earn a certificate
Add this certificate to your resume to demonstrate your skills & increase your chances of getting noticed.
